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CHAPTER 1

Magnetic Circuits

Introduction .

Magnetic flux lines always form closed loops. The closed path followed by the

flux lines is called a magnetic circuit. Thus, a magnetic circuit provides a path

for magnetic flux, just as an electric circuit provides a path for the flow of electric
current. In general, the term magnetic circuit applies to any closed path in space,
but in the analysls of electro-mechanical and elactronic system this term is
specifically used for circuits containing @ major portion of ferromagnetic materials.
The study of magnetic circuit concepts Is essential in the design, analysls and
application of electromagnetic devices like transformers, rotating machines,
electromagnetic relays etc.

Magnetomotive Foree (MLMF) ¢

Flux is produced round any current — carrying coll. In order to produce the required
flux density, the coll should have the correct number of turrs. The product of the
current and the number of turns Is defined as the coil magneto mative force (m.m.f),

If I = Current through the coil (A)
N = Number of turns in the coll.
Magnetometive force = Currant x turns

SOMMF=1XN ,
The unit of M.M.F. is ampere—turn {AT) but it is taken as Ampere(A) since N
has no dimensions.

Muagnetic Field Intensity:

Magnetic Field Intensity (s defined as the magneto-motive force per unit length of the
magnetic flux path. Its symbol is H.

Magnstic field Intensty (H) = Magnetomotive force
" Memn length of the magnetic path
N
> e TN
! /

Where [ is the mean length of the magnetic circuit In meters. Magnetic field Intensity isalso
called magnetic field strength or magnetizing force.



Permeanbility :-
Every substance possesses & certain power of condiicting magnetic lines
of force. For example, iron is better conductor for magnetic lines of force than alr (vaccum)

Permeability of 2 material () is its conducting power for magnetic lines of force. Itis the ratio
of the flux density. (B) Produced ina material to the magnetic filed strength (H).

- B
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Reluctance @
Reluctance (s) is akin to resistance (which limits the electric Current).

Flux in a magnetic circuit s limitad by reluctance. Thus reluctance(s) Is a measure of the
opposition offered by a magnetic circuit to the setting up of the flux,

Reluctance Is the ratio of magneto motiva force to the flux. Thus

y = Mmf /
S e

Its unit is ampere turns per webber (or AT/wh),
Permeance.-
The reciprocal of reluctance is called the permeance (symbol A).
Permeance (A) = 1/5 wb/AT
Turn T has no unit.
Hence permeance is exprassed in wb/A or Henerys(H),

B.H. Curve :

Place a plece of an unmagnetised iron bar AB withih the field of a

solenoid to magnetise it. The field H produced by the solenold, is called

magneatising field, whose value can be altered (increased or decreased) by



changing (increasing or decreasing) the current through the solenoid. If we
increase slowly the value of magnetic fleld (H) from zero to maximum value,
the value of flux density (B) varies along 1 to 2 as shown in the figure and the
magnetic materials (e iron bar) finally attains the maximum value of flux

density (Bm) at point 2 and thus bacomes magnetically saturated.

Fig. 2.1
Now if value of H is decreased slowly (by decreasing the current In the

solenoid) the corresponding value of flux density (B) does not decreases along
2-1 but decreases some what less rapidly along 2 to 3. Consequently during the

reversal of magnetization, the value of B is not zerg, but is '13' at H= 0. |n other

wards, during the period of removal of magnetization farce (H), the iron bar is

not completely demagnetized.

In order to demagnetise the Iran bar completely, we have to supply the
demagnetisastion force (H) In the opposite direction li.e. by reserving the
direction of cutrent in the solenoid). The value of B is reduced to zero at
point 4, when H='14". This value of H required to clear off the residual
magnetisation, is known as coercive force ie. the tenacity with which the
matetial holds to its'magnetism.

If after obtaining zero value of magnatism, the value of H is made mare
negative, the iron bar again reaches, finally a state of magnetic saturation at
the point 5, which reprasents negative saturation. Now if the value of H is
increased from negative saturation (= '45') to positive saturation ( = "12') a



curve '5,6,7,2" is obtained. The closed loop "2,3,4,5,6,7,2" thus represents one
complete cycle of magnetisation and is known as hysteresis loop.



CHAPTER 02

COUPLED CIRCUITS

It is defined as the interconnectad loops of an electric network through the
magnetic circuit.

There are two types of Induced emf.
(1) Statically Induced emf.
(2) Dynamically Induced emf.

Faraday's Laws of Electro-Magnetic :

Introduction = First Law : =

Whenever the magnetic flux linked with a circuit changes, an emf is induiced in it.
OR

Whenever a conductor cuts magnetic flux an emf is induced in it.

Second Law : =

|t states that the magnitude of induced emf is equal to the rate of change of flux
linkages.

OR

The emf induced is directly proportional to the rate of change of flux and
number of turns

Mathematically :
di
dr
¢ < N

e

Or
A
¢ = =y
dr
Where e = induced emf
N = No. of turns
&= flux

“wve'sign is due to Lenz’s Law

Inductance : —
Itis defined as the property of the subistance which opposes any change in Current & flux,
Unit : — Henry



Fleming's Right Hand Rule: —

It states that "hold your right hand with fore-fingsr, middle finger and thumb at right angles
to each other. If the fore-finger represents the direction of field, thumb represents the
direction of motion of the conductor, then the middle finger represents the direction of
induced emt.”

Lenz's Law: —

It states that electromagnetically induced current always flows In such a

direction that the action of magnetic field set up by it tends to cppose the vary
cause which produces it.

OR

It states that the direction of the induced current (emf) is such that it opposes the
change of magnetic flux.

(Z) Dynumically Induced emf :—

B
B
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In this case the field Is stationary and the conductors are rotating in an uniform magnetic
field at flux density ‘B” Wb/mt2 and the conductor is lying perpendicular to the magnetic
field. Let '' Is the length of the conductor and jt moves a distance of 'dx’ ntin time ‘dt’
second.

The area swept by the conductor = . dx
Hence the flux cut = ldx. B
Change in flux in time 'dt’ second =
Bldx
di
£=8Blv
If the conductor is making an angle '8’ with the magnetic field, then
e = Blv sinB




(1) Statically Induced emf :—

Here the conductors are remaln in stationary and flux linked with It
changes by Increasing or decreasing.

It is divided into two types .

(1) Self-induced emf.

(i) Mutually-induced emf,

(i) Self-induced emf : = It is defined as the emf induced in a coill due to the
change of its own flux linked with the coil.

&

If current thraugh the coll Is changed then the flux linkad with its own tumn
will also change which will produce an emf is called self<induced emf.
Self-Inductance : =

It is defined as the property of the coll due to which it opposes any change
[ihcrease or decrease) of current or flux through it

Co-efficient of Self-Inductance (L) : =

|tis defined as the ratio of weber turns per ampere of current in the coil.
OR

It is the ratio of flux linked per ampere of current in the cail.

ist Method for L7

_No
T
Where L = Co-efficient of self-induction
N = Number of turns
& = flux
| = Current



2nd Method for L : =

We know that
; ¢
!
AL =Nd
B L= —Nibp
gl s
ot ot
-I;ﬂ:-.\'ig
dr ar
i
_L —— 9
dr k
il
L =
&3
—
= l= i’
dr
Where L= Inductance
Lt . y
o ==N=ris known as self-indueed emf.
, al ,
When .= lamp/ sec.
thy
e=1volt
L=1Henry

A coll Is szid to be a self-inductance of 1 Henry if 1 volt is induced in it
When the current through it changes at the rate of 1 amp/ sec.

3rd Method for L :—
t \’:
2 M_M{.A.

Where A = Area of x-section of the coil
N = Number of turns
L = Length of the coll



(i) Mutually Induced emf : =

It is defined as the amf induced in one coll due to change in currant In other
coll, Consider twa colls ‘A’ and ‘B’ lying close to each other. An emf will be
Induced in coll ‘B" due to change of current in coil ‘A" by changing the

position of the rhecstat.

ity

Mutual Inductance :=>
It is defined as the emf induced in coil ‘B’ due to change of currant in coll "A’
is the ratio of flux linkage in coil B to 1 amp. Of current in coil A",

Co-efficient of Mutual Inductance (M):
Coefficiant of mutual inductance between the twao coils is defined as the
weber-turns in one coll due to one ampere current in the other.

1st Method for ‘M’ :=>
§f =4

|

Nz=MNumber of turns

M = Mutual Inductance

1= flux linkage

[ = Current in ampere

2nd Method for M : =
We know that

\
y -8

AMI= Ny Dy
H-\ ='N:-“¢1



Where

— g

el . [
en =—3 VOLT
Then M = 1 Henry

A coll is said to be @ mutual inductance of 1 Henry when 1 volt is induced
when the current of 1 arnp/sec. is changed in its neighbouring coil.

3rd Method for M :—
M= ‘u“' u"“\.l‘v.'

Co-efficient of Coupling :
Consider two magnetically coupled coils having N1and Niturns respectively.
Their individual co-efficient of self-inductances are

NN AN

L — - » >
: /

» - 3 y J

r. - .u..,M; 42

The Nux ) produced i cotl A’ due to a ctrrent of 1/ ampere is

Ll MMANG
d{ o~ = — x-—

v, ! N,

1{ a M , ¢L\. ! N
(A -_—:—&
Suppase a fraction of this Mux Le. Ki @ s linked with coil *B°
Thiet s = 2% «N.= Aph ¥ {h

Il MM A

Similarly the flux ¢ produced m coil "B due to L amp. Is



_ MM AN,
: !
Suppose a fraction of this flux f.e. K2 ¢f 215 linked with coil *A’

ﬂ_‘#. ‘.\o k \ \ 2)
I M U A

Multiplying cquuuon ()& (2)

Then W

1
.
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Where ‘K’ is known as the co-efficient of coupling.
Co-efficient of coupling is defined a5 the ratio of mutual inductance
between two colls to the square root of their self- inductances.

Inductances In Series (Additive) 1 —

~A0K 05

Flaees are il wttpe durection
Let M = Co-efficient of mutual inductance
L1 = Co-efficient of self-inductance of first coil.
L= Co-efficient of self-inductance of second coil.
EMF induced In first coil due to self-inductance

/4
er . L .‘_
% '
Mutually induced emfin first coil



dl

=-M —
Sar, dl
EMF mduced i second cotl due to sell induction
¢, ==1. ﬂ
. " dt
Mutually induced emf in second col
dl
0. =M<
- di

Total induced emf
E=e 4o te 40,

1L is the equivalent mductance, then

gl
it ‘ff o St it
!

S =l=s=—(L -L -2\
i ‘"(L,
SLali+l, =2 ‘

lnducmnces In Sceries (bubstnactn e):—

fm’%?‘WL

(Flusss mommsi:t it dirwction)’
Let M = Co-efficient of mutual inductance
L1 = Co-efficient of self-inductance of first coll
L2 -= Co-efficient of self-inductance of second coll
Emfinduced in first coll due to self Induction

dl
' dl
Mutually indmud emf in first coil

0"' = | ‘{ (Z‘ | l!“‘



Emf induced 10 second coil due to self~induction

dl
€y = A
dt
Mutuelly mduced emf in second coil
( dl dl
Gy = ~|. M =M

Toral induced cml
E=8 + Eu + &m + e

Then

B g B A R
i o w wW
gl

e s 1 o o - T
" di( ) =il

Let two inductances of &, & L are connected in paraliel
Let the co-efficent of mutual inductance between them is M.
"i;‘*‘i}

d_dy s
i &l i
dl it
3 ’ _L- J‘! —
s @ At
- ,.. .'L » .",i’L
)] ol
i ol s i
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- (1. =ML =(].— ) —
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Al L, MY ¥
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gr  di W
ol NMasde, v,
(fy=AMyar dr
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If*L" s the equivalent mductance

di i i,
[—=] —=l—
s 41 d: dr
:'J—‘—’——\fdf
W
n‘i | .ﬁ i
— el L Y 4]
G s ’
Sibstitting thcv.:luc ur"-,"
i 1 , LM ]d. 5
dz 1 L=N J
Equaning cquation (3) & (5)
I I '_-? Ml V i,
A I I, i)

LB )
’ - M
T L[L" LM J

_ Be=M =) ' (=T =T M AT
L= I L-A

A P.;z,_-..)f
R A A

= "-f.: -2M =—;'[!1’: - M;]

L+=L-2}

When mutual neld assist.
Ll =M*

L +L, % 2M

When mutual field opposes.

‘ _ o LL=d |




Exp.-01:

Two coupled cals have self inductances Li= 10x10°H and L:= 20x10°H. The
cosfficient of coupling (K] being 0.75.in the air, find voltage in the

second coil and the flux of first coll provided the second coils has 500 turns
and

the circuit current is given by i1 = 2sin 314.1A.

Salution :

M=KV L1L2

M= 0.75 J10%105 % 20810 5

AN =10.6x10-H

The voltage induced in second cail is

VFM";“

=10.6%10" » 2x314 cos 3144t

The magnetic circult belng linear,
\ - N 5004

4 !

|

e \ ”x_“)(ulo e
s LUEY SO =4 75

=3.66 « 107 sin 3141

Exp. 02

Find the total inductance of the three series connected coupled colls.Where
the self and mutual inductances are
Li=1H, La=2H, L:=5H

Miz=0.5H, M2 =1H, M3 = 1H
Solution:

La=L1+ Mo+ M

=1+205+1

=2.5H

La= Lo+ M2+ M

=2+1+05

=3.5H

le= L+ Mis+ My

=5+1+ 1

=T7H

Total inductances are



lei=La+ La+ ke
=25+43.5+47
= 13H (Ans)



CHAPTER 3
1.1 Yolage

Enerzy is required for the movement of charge fom one point 1o another, Let W
Joules of energy be required to move positive charge Q columbs from a point a w
point bin a circnit. We say that a voltnge exists between the two points, The voltage
V berween two paints may be defined in terms of energy that would be required if a
charge were transferred from one pomt to the other. Thus, there can be a vokage

between two points even if no charge iz sctually moving from one te the other,

Voltnge bétween & and b is given by
W
) I
; i o~ Worked are (W)dn Joules
Henee Elecimic Potential (V) Charge (Q)in colu =
Current

An zléctric current is the movemen! of electric churges along 2 definite path, In case
of & conductor the moving chirges ame electrons.

The unit of current is the ampere. The ampere ¢ defined as that current which when
flowing i rwo infinitely long parallel conductors of peglimible cross section. situated 1
fetet apart in Vacuum, produces between the conductors o forte of 2 x 107 Newton pet
metre length.

Pawer : Power is defined as the work done per unit time, 1f 5 field ¥ newton acts for t
seconds throtgh a distance d metres along a straight line, work done W = Fxd Nom. or |
The power P, ether generated or dissipated by the cironr element.

p:ltg x4



Work
e

Power can also be written as Power =

Work X Llf;mﬂe = Valtage x Currem
Charge  Time
P=Y xIwatl

Energy : Electric energy W is defined as the Power Consumed i a given time.  Hence, if
current A Howsan on efement over o tme penod | second. whien s voltage V' ovolts s applied

across i1 the energy consumed is given by
W=Px1=VxIxt Jar warl secaond

The unit of energy W is Joule (J) orwatt. secoid. However, in pructice. the unit of

eneriy ds kilowatt, hour (Kwh)

1.2 Resistance  According 1o Ohm's low potentinl difference (V) across the enids of g
condustor is proportionul 1 the current. (1 fowing thrsugh the conductor ar a

canstant temperature. Mathematiodlly Ohm's law s expressed ns

VeelaV=RxI|
Or R = % where R is the proportionality constunt und is designated s the condudtor
resistunce wnd ho the wit of Ohm (€2)

Canductance : Voltupe is induced in o stationry conductor when ploced in o varying
magnetic field. The induced yvoltuge (¢) is proportional 1o the time rate of chunse of

eurrent, dirdl provucing the magnetic field.
. di
Therefore ¢ o ai

i
O =1. —
e e



¢ and 1 are hoth function of time. The proportionality constant L 15 called inductance.

The Umt of nwdoctance 5 Heoery (H),

Capacitance : A capavitor is a Physical device, whieh when polanized by an sleetne field

by applving o swilible voltage neross it stores encrgy in the form of o charge separation.

I

The ability of the capacitor lo store charpe is messured 10 terms ol capacitanee:

Capaeitence of o capacitor is defined 3 the chorge stured per Volt applied.

c= 9_ Coulomb

oo
v Valt Faze

Active and passive Branch :

A branch is said to be netive when it contains one of more eneriy sources. A piassive

branch docs notcontain an energy source,
Branch @ A brunch is an element of the network hoving only two terminals

Rilateral and unilateral element :

A hildteral element conducts equallyv well i either direction. Reststors and indultors
are pxamples of bilateral  clements. When the current voltage relations are different
for 1he two directions of current flow. the clement 15 smd 10 be umlaternl, Diode s an

unilateral clement.

Linear Elements : When the current and voltuge relationship in an clement can be

simdated by o Hnewr equation either algebrale, differential or integral tvpe. the

element 15 smd 1o be Hnear element.

Non Linear Elements : Wihen the current and voltage relativnship m ws element cun

oot be mmulated by o linear equation, the 2lement 15 said to be non lineor clements

Kirchhoff's Voltage Law (KVL) :

The algebmiv sum of Voltages (or vahiage drops) m any closed path or loop (s Zero,



Application of KVL with senes connected voltage source.

Rl

Fig. 1.1
Vit Vi IR, - R =0
=Vi+Va =1 (R +Rz)

V.+V,
R, +R.

l=

Application of KVL while voltage sources are connected in oppasite polarity,
R

—Wh-

Fig. 1.2
Vi= IRy~ Vi IR~ IR5 =0
PNV = TRy ¢ IR+ T
7 V=V (R4 IR: 4IRS



_ Y =V.
» '=__'_
R +R,+R,

Kir ff's Current Law L):

The algebruie sum of currents (neeting ot o junction or mode is zero

Fig. 13

Considering five comductors, carrying currents [y, [y, [y 1y and [omeetmyg at o pomt O
Assunung the incoming currents o be positive and owgoing currents negative,

htth) = L=t =0
||‘ l:‘h—l"l;:o
h+h+h=hL-1
Thus above Low can olso be stmed as the: sum of currents Howing towards any

unetion i an efectrie cirowmt |5 aqunl to the sum of the currents flowing away from
thal pmetion

Voltage Division (Series Circuit)

Considering » voltage searce (E) with resistors B, sl R; in series across It

R.
AMY

E < /D g
R;

Fig. 1.4



ER,
R, +R,

Valtage drop across Ry =1 Ry =

ER,
R, +R.

Smmilarly voltage drop across Ry = LR, =

A paralle] clrcuit aets as o urrent divider as the current divides inall branches in o
parallel oot
N - o
t w 1 L

PEl .

Fig. 1.5

Fig shown the currert | has been divided into 1) and 1z i two parallel Branches with

resistanees By and R while Vs the voltage drop across R md Ra:

I, ‘:—\; und ]x:l
R, R

Lot R= Total resistance of the cireuit.

Hence -




_ VIR, +R,)
RR.

[ -

v
RR.
R, +R,

¥
It

But= V=1R, = iR,

T T (L |

R, +R.

- = _l'(Rl‘FR:y
R,

Therefore I = R,

R - R

Stmilarly 1t can be denved that

R, +R.

I; =




NETWORK ANALYSIS
Different terms me defined below:

L Circuit: A cireuit Is o closed conducting path through which un electrio owreal either
flow ar |s intended {low

2 Network: A zombinoien of vanous electize elements, connected m my
Whatsoever, is  colled an ¢lectne network

manner;
3. Node: 1115 an equpotentinl point al whieh fwo or more circuit elements are joined.
4. Junction: if {s that point o) a network where three or more elreut elensents are joned

3. Branch: it 15 part of a petwork whieh hes betwesn juncion pemts.

6. Loop: It is b clomed puth tn a cireutt inowhich no clement or node {s secounted more thay
onee.

7. Mesh: 1t is a loop that eontains no other loop within it

Example 3.1 s thas circunt configuration of lgure 3.1, bt e o, of 1 ciret elémerts 1)
nodes §if) junction points w1 branches and v meshes.

Re
¢ d
R4 ' R’)
Pl
R) hY; b RB
a : ¢
Vi | R. R-
K f {

Ri R.) V 3



Solution: 1) no. of circuit clements = 12 (9 resistors = 3 voltage sources)
i) no. of nodes =10 (o, b.e. d. e, f, 2 h Kk, p)
1) no, of junctoen points =32 (b, 2, h)

wino, of hranches = 5 (hede, he. b, befgh, akh)

v) ol of meshes = 3 (abhk, bede. beth)

3.2 MESH ANALYSIS

Meshand nudal analysds are two busic important technigues used i finding solutions
for o network. The suitability of either mesh or nodal analysis to a particular problem depends
mainly on the mumber of voltage sounces or current soarces If o network has a large number
of voltoge sources, o 15 useful 1o use mesh anulysyse as ths onalysts reguires thioe all the
sotrees in o circuil be voltage sources. Therelore, if there are any current sotirces in a cirouit
they are Lo be converted inta cquivalent voltage sources if, an the otber hund, the network hus
mone gurrent sources, hodil analysis is more uselul.

Mesh analysis ix opplicable ondy for planar networks, For' non-plasor circuits mesh
analysis s not applicable A cireuil is sild o be planor, (it can be drawn on s plane surface
withou! crossovers. A non-planur erremt eunnut be diswn on o plane surface without a
CIOSSOVET!

Frgure 3.2 () s a planar clreuit. Figure 3.2:(b) s & non-<planar circuit and fig. 3.2 (0) {s o
planar cireuit which looks like u non-plasar cireuit. 1t has already bean disgussed that 4 loop
15 9 closed path. A mesh 1s defined as o loop which does not eontmn any other lovps within 1t
To apply mesh analysis, our first step s 1o check whether the cireuit is planar or not and the
second 1% to sdlect mesh currents Fibally, writing KirehhofT™s voltage Tow equations in lorrms
of unknowns and solving them leads to the final solution

() (h) wi

Figure 3.2

Observaiym of the Fig 3.2 mdicores it there are two loops ohefiond bodeb m the
retwork Let us assume loop currents [, and Lwith directions o5 indicated in the Agure.



Considenng the loop abefa alone, we observe that current |, is passing through Ry and (1:-13)
1s passmg through Ry By opplving Kinehhotl™s voltage low, we can write

\_". =l|R)‘R_:“;-l;' (3“
R, e
T NN\ AVAYAY T
Vs [t
Ry
G " ':
- -
l'_ © d |

Figure 3.3

Similarly, if we consider the second mesh bedeh, the current L is pussing through R,
ond Rs and (55 - 1;) 15 passing through Ky By applying Kirchhoff"s voltage law around the
second mesh. we have

R (11 + Ryls =Ryle=0 (3.2)

By rearrunging the above equations the corresponding mesh current equations are
I (Ry+R) = LR =V,
ARz SRR R E=0 (3.3)

Hy solving the above equations, we can find the currents §, and 1= H we observe
Fig 3.3, thectromt consists of five branches and four nodes. ncluding the reference node. The
rmbor of mesh currents i eguul to (he muoriber of mesh cquations

And the num{)er af ethnnsvbmncbes-_(uodcs-l)_in Fig 3.3, the required number of
mesh current would be 5-(4-11=2,



In generai we hove B number of branches and N mumber of nodes inclodimg the
refergnee nowe thpn number of linearly independent mesh equatons M=B+(N-1),

Example 3.2 Wiite the mesh —A\AAN
50 100

curtenl equations i the circait shown 0N 2Q

in fig 34 and determine the currents

Figure 3.4

Solution: Assume two  mesh  currents o e direction by mdicated  in fig
3.3 The mesh current equntivns are

50

i LA

S0V

Figure 1.5
S+ 211 =10
i+ Xl=1y) =350=10 (34
We can rearringe the above aquations as
T1-3:=10
2+ = -50 (35)

By solving the aboye equations, we have [, =025 A, and 1, =<4 125



Here the current in the second mesh I3, 15 negative; that is the actual current 1: flows oppasite
to the assumed direction of current in the coout of hg 3.5

Example 3.3 Determine the mesh cusrent 1) in the clrowit shown i fig.3.6,

Figure 3.6

Solution: From the crrewt, we ean from the followmny three mesh equations

(0= 560050 =310 = 50 (3.6)
2y +S(HN ) # 1T = 10 (3.7)
Sl HiihEy = -5 (3.8)

Rearrunging the above vguations we gel

I8+ 51-31=50 (RRY)
S1pH8L+ =10 3,10)
31 % 1yt S1=3 (3.1

Accordimg to the Cramer's rule



50 5 3]

1 % |
Y I

I8 5 —3| 356

5 8 |

=3 [1 ]

Or [= 3.3 A Sitmalurly.

18§00 -3
O (V|
(=3 =8 4| -355
N (T =" 356
5 8 |
| =3 1 4 |
Or 1=-0,997A 13.12)
IS 5 30
S8 10
-3 | =5| 325
= |98 3 3| 3%
5 8 1
(-3 1 4]
Or =1 47A (213)

S E3EAL =0907A =1 47A

1.3 MESH BQUAIIDNSB\"M'&CDDH METHOD Tt snhy svunnnes fur & gevsersl pianss networh oo be ansen
Uy demptcniisn w it ooy ol e dutailed shisgs. Cuslden i diree wiesh hetieanks iis st s Goute 5 7

Thu bpop eguavon ame 1L = Bl d =Y, R Rz

\'.C:




Ral L1+ LR y=-V, 314
Rl R~V 315

Reordering the above equations, we huve

(RytRyRA=V, RNV
Ry HRAR =Y a7
(R=Ral=V, RIS

The genital mesh cyuutions for three mesh resistive network can be wrilten as

Rtvll:iki:lgi m”l]:' \', 310
= Raihi+Rzl: = Rul= W 320
* Ryl £ Risli=Ryl= V. 321

By companng the equations 3.16, 3,17 and 318 with equmtions 319, 320 und 3.2
respectively, the following observations can be taken mto necount.

1. The self-resistance m ¢ach mish

2. Themumml resistances between all pairs of mieshes and

3 The algebmic sum of the veltages mn each mesly,

The self-resistance of loop 1, Ry =Ri~R 15 the sum of the resistances (hrough which ||
passes,

The mutual resistapee of loop |, Ry= <K, 1s the sum of the resistances common 1o loop
currents 1y and 1; 18 the directions of the currents passing through the commuon resistances are
the dume, the rutstl resistance will have o positive sign; and if the directions of the currents
pussing through the common resistance are opposite then the mutual resistunce will huve
megative sgn.

' V.=V, s the voltoge which drives the loup | Here the positiye sign ix wsed of
the direction of the ourrents 14 the sunse as the direction of the suurce. I the current
direction s opposite to the direction of the source, then the negative sivn i tsed.

Similarly Ro=Ry+Ri and Ro=Ry+Ra are the self-resistunces of loops 2 und 3
respechvely. The mutunl resistanges B, =), Ri= -Ra. Ree=0, Rapd)) Rys=0) are the
sums of the resistances common to the mesh currents ndicated in their subseripls:

Vi= V2 V.= V. are the sum of the voltages dovingther respective loops:



Example 3.4 write the mesh equation for the circuit showr m fig. 3.8

ov C

Figure 3.8
Solution : the penerul equation for three mesh equation are
Ride=Rol: 2 Rusl=V, 322
4 Ryl [+ Raly = Rusl =V, (323)
= Ryl Razlas Ruls=V, (3.24)

Consider equation 3 22

Ry=salf resistunee ol lopp |=( LM+ 3 Q6 Q) =10 Q

Ri= the mmual resistance common (o loop | and loop 2= -3 0

Here the negative sign indicates that the currents are m opposite dircction
Ry = the nuitual resistance common 1o loop | & 3=-60

V.= + 10 V. the voltige the driving the Toop 1.

Here he posttive sign indicates the foop cumment 1) 1s m the same direotion & the
sonce element.

Therefure equition 322 canbe wrttlen as



10 b= 31260= 10V (3.35)
Consider Eg.3.23
Re= the muual resistance common o foop | and loop 2= -3 0

Rar= selfresistinee of loop 25302 Q +3 My =10
Re=0, there 15 no common resistance between loop 2 and 3,
Vi= -5 V. the volinge driving the [vop 2.
Thetefore Eqg. 3.23 can be written os
-3+ 10L=-8V (3.26)
Consider I 3.24
Ry= themutual resistance common o loop | and loop 3= -6 0
R the muutual resistunce commimon (o Joop 3 and loop 2=1(
Ry~ sellresistnte of loop 3=160+4 Q) =10 Q)
Vo= the algebraic sum of the voltage dnving loop 3
=HSV+20Vi=25 (227)
Thetetbre, Eq3 2dcan be wriltenins <61, ¢ [01= 25V
613100 1OV
A+ 101=-8Y
61 +101=23V

3.4 SUPERMESH ANALYSIS

Suppose:any of the branches 1 the network has a current souree. then i1 1s stightly diffreudt o
apply miesh analysis strmght forivard Because first we shoald assume an unkaown volinge
across the curment source, writing mesh equation as belore, and then relate the source current
to the assigned nesh ctments. This is generlly a difficult approachs On way to overcoms this
dithiculty s by applying the supermesh techmique. Here we have to choose the kind of
supermesh. A supenmesh is constituted by two adjacen) loops that have o commen current
source. As'on exumple, consider the netwaork shown in the ligure 3.9,

A L
«<| V || l; R, ’) R.;
SR
«— < ‘ -
1 l@ 2 3




Here the current soares | 15 1n the common boandary for the two meshgs | and 2. This current
pairce crentes o supermesh, which 1s nothing but o combination of meshes | and 2

R+ Rl =Y
Or Rilj + Ruly = Rili= 'V
Considening mesh 3, we 'bave
Rols-1i)+ Rel =)

Froally the current | from current source 1s-equal 1o the difference between two mesh currents
Le.

1-1=1

we have thus formed three mesh equations which we ¢an solve for the throe unknown
carments in the network.

Example 3.3 Determume the curzent in the 52 resistor in the netwiork given in Fig 3.10

g &
20
hILEY C N Ha
Figure 3,10
Solutian: - From the firsd mesh, 1o, nheda, we have
50 = 1001450 = 3019
Or 18110 -51=30 (3.28)

From the second and thisd meshes we can form 2 super mesh
LLTE O P i RS FE14 PO (Y 1)

O 45“"‘"2': Hll);ﬁ (324



The curment source 15 equal to the difference between [l and 111 mesh currents
e Ix1=2A (3.30)
Solving 328.3.29 and 3,30, we hove
L=1009A 1= 1733 A and 1= 1333 A
The current in the 5€) resistor=1, -,
=149.99 -15.33=4,66A
Thoe cwrent in the SQ restutor is 4667

Example 3.6. Write the mesh equations for 1he circut shown o fig 3,11 and derermmne the
currents. 1) I, and [,

€2

Fisure 3.11

Solutian ; In fig 311, the current souree lies on the perimeter of the clreuit, and the
[Trst mesh {5 tgnored, Kirehhof s voltuge liw is applied only for second amd third meshes

From the second mesh, we howve
3i=1 2 10 =0

Or -3 S22 -1 {133

From the third mesh. we have
b+ 2qly-1:) =10

(813 2430 =10 (3.

.
i
R
-



From the first mesh, 1 =10A (3.33)
From the gbovethiree equations; we pot

I=10A, 1.=7.27. =3 IRA

3.5 NODALANALYSIS

In he chapter | we dbcusyed simple. elreuits contatning otly twe nodes, including the
reference node. In general, ih & N node cutcull, one of the nodes is choven as the reference on latim
tode, then it ds posibile fo wiite N <tnodal oquations by assuming N-1 gode woltages. For
exatiplea 1O ande ciecult raquires nine woknown sdltages and nine equations. Each node ih aireull
cun be assigned p aumber ar u letter, The npde voltuge is the voltage of o given node with respect to
one porticnlar oode, valled the referenos node, which we assume a1 zem potential. fn the cirenlt shown
m fig 312, pode 3 is ussumed as the Referonee pode The voitage a1 npde | s the volage at that
node with respeet 1o oode 3. Similarly, the voltige af node 215 the voltage pr that node with respeot
node 3. Applyinz KiehhofT's current law a1 node 1, the current emenng w the curren fzpving (See
Fig3.13)

y @

,
|

Frgome 3,13

= ViR = (V- VaIR;



Where Vi and V: are the voltazes at node | and 2. respectively. Similarly, ot nodg
2.the carrent entering 15.equal 1o the current leaving as shown in fig. 3,14

R:' 'R"

Figure 3 14

— —

(VoVIR: + ViR = V(R #Ry) 0

Rearrnnging the above equntions, we hnve

ViR + DR VAR = |y

VR # V[ 1R+ 1R+ 1/(Rg* R =4

From the above egquations we can find the vollages at each node

Example 3.7 Determune the vollages ot coch node for the circult showr i fig 315

i

102 _’\/\/\/\_ 20

362

i) ®

oy 9] SA 19 2o

Figure 3,135

Solution : At node 1. assuming that all currents vre leaving, we haye
CV=T0VI0 4 (V= Vo3 +V (8 + (VN3 =1
Or V[0 +13 + 1S+ 3] Ve[ 113+ 13]= 1

096V 066V.= | 13.36)
At pode 2. assuramg that all carrents are leaving except the: ¢urrent from curtent souree, wa
e

(V=N 13+ (VY3 (Ve V)2 =5
V23V 13 <103 = 12Vl 112) =5
L6V =116V 0.5V = § (337)



At node 3 assuming all correants are leaving, we hove
(VM2 + Vil = V6 =0
LSV L6V =D (3.38)
Applymg Cramer's rule we get

I —066 0
5 116 —05
Ve o -0.3 166 | 7 m —4.106
096 —066 0 | (KT
-066 116 —05
0 <05 Leb ]
Sinﬂ!mly. )
noe 1o
066 5 —03
Ve 00 166 | 9n6 102
1096 066 0 | 0887
oo Lle -05
N —05 166 |
TN —006 1
~066 106 5
Ve 0 05 0 | 27 .4

096 —0066 0 | 0887
-066 116 -3
0 -05 166

36 NODAL EQUATIONS BY INSPECTION METHOD The aodal squmons fom & gomesd plansr meseors can i b spmws by
ot w i) ey thngth e Jetit g i Comeifer o thtems ninie ssajstive memonss itchnime (e mfronoe s wn ibeesn e
En

Ry R, R«

— Figure 3. 16



In fig. 3 16 the points a and b are the actual nodes and ¢ is the reference node.
Now consider the nodes a and b seporntely us shown o fig 3.1 7(a) ond (b)

Frgure 3,17 -

In fig 217 (a); according 1o Kirchhofl"s cumrent low we have

I+ 1+ l=0
(V,=V R =V R (V,-VR= 0 (3.39)
I fig 317 (b) . af we apply Kirchhoff's curren) law
Lt =1,
(Vi VR: = ViR ViV R0 (340

chnuugmg the above eguations we ge
(DR AVRA VROV AVRAOVELLUR GV 1340
VRV, (VR R ROV VR, (342)
In general, the above equation ¢an be writien ps
GauVa +GuVies| (343
GV, Gy Vi=te (3.44)

By comparing Eqs 3.41.3.42 and Egs 343, 3.44 we have the self conduetanee at node
m G = URy = PR+ R s the sum of the conductances conngcted 1o node 2 Spmularly,
Gue= (1R = TR * PR s the sum of the conductances conneeted 10 node b G- 1/Rs) is
the sum of the mutal conductinees connected 1o node ¢ and pode b, Here all the mutval
conductances have negative signs. Stmlarly, Ge= (<1'Ry) is also a mutual conductance
comnected between nodes & and g 1) and 1; are the sum of the spurce currants at node g and
mode b, respectively. The current which drives into the node brs positive sign, while the
current thot drives away from the nede has negative sign,



Example 3.8 for the cireut shown o the fgure 318 write the nods equations by the
mspection methiod.

Fig 318
Solution:-
The generdl equations are
GV GV (3.45)
GV = G Vi=te 13.46)

Consider equation 3.45

G,=l1+ 12 +1'3) m]m. The self conductanee al node ¢ s the sum uf!hc condugtiances
cammegted (o node a.

Oy =10+ /3= 1 3) mho tbe self conductance af node b 15 the sum of copductances
connected Lo pode A,

Gy =113) mho, the mutual condtances hetween misdes @ and & is the sum of the
conductances connected between node u und .

Stomilarly Gyg= «( 1731 thie sum of the nwtdal conductinees between nodes b and o

1=1001=10 A, the source ¢urrent ol node o,



L=125+ 3/6) = 1.23A. the source current ot node 6.
Therefore. the nodal eguntivns are
L 83V,-0.33V,=10 1347)

A 3VATVE LS [3.45)
1.7 SUPERNODE ANALYSIS

Suppose any of the branches in the notwork has a voltage source, then it is shightly difficult to
opply nodal analvsis. One woy to overcome this difficulty ix to opply the Supernode
technnque. In this method, the two adiocent nodes thit e Connected by o valtisge source are
reduced to o singlé node and then the egquutions dre formed by applving Kirehbofl™s current
Law s wstl. This is expluined with the help of fig. 3,19

Vi Vs

-

:

R.

| @-) R R,

FIG 3.1

[tis clear from the fig 3,19, that sode 4 18 the referemee node: Applying KirchlolF s current
Lot nde 1, we got

VR ) = (V- Va )Rz

Due 1o the presence of voltage source V, in between nodes 2 and 3 it is slightly
difficult 1o find ow the current. The supemode techmigue can be convenently apphed m s
vane,

Accardingly, we can write the combined equation fot nodes 2 and 3 as under.



(V2 V VR;: = VylRy # (V- V IR, VR 0
The other eguation 1
V:—\", _.\f‘

From the above three equntions, we can find the three unknown veltages,

Example 3.9 Dotermine the current in the 5 € resistor for the circuit shown in fig

A2

Cuj»p A3

fig 3.20

Solution. At pode |
0= N3+ (Vi-Vae2
Or  Vi[1/3:4121-(Vi2)100

ORIV AOSV 10 =10) (249)

At node 2 and 3, the supemode equation is
(V=VIr2 + ¥l = (Va=ly§s =Vhai2=10
Or  ~Vi2+Ve{( 2 I Va[1i5= 123=2
Or 0.5Vt LSVH0.TV-2=0 12:50)
The voltage between nodes 2 and 318 miven by

VeV =20 (3.51)



Chapter-04

NETWORK THEORM

INTRODUCTION

This chapter mtroduces @ pumber of thearems that hasve application throughou thee field of
electricity and electronics, Not only can they be used to solve networks such a8 encountered
iy the previous chapler, bt they also provide an opportunity @ determing the impact of 4
purticulur soutce or element on the responsé of the entite systom. fn miost coses, the network
to be unolyzed and the mathoratics reguired to find the solution are simplified All of the
theoreins appear ngain in the malyas of ae detworks: In facl, the application of eavh theorem
(o o networks (5 very simalir in content to that found 10 this chapter.

The: first theorem 1o be miroduced 15 the superposition theorem. followed by Thevemn's
theorom, Norton's theorem. pnd the mpamum power transfer theorem. The chapter
congludes with a brel mtroduction to Millman’s theorem and the substitution and reciprocity
theorems

SUPERPOSITION THEOREM

The superposition theorom states that “Ihe curon throygh, or vollage acrosy, any
cloment of a network is ¢qual 1o the plgehrme sum of the carrents o voltages produced
mdependently by ¢ach spurce,”

I1s other wardds, this thearem allows us 1o find a solution for & curment or voltage using
only ene sourse at 2 time. Once we have the solution Foreach source, we chin combine the
results 1o ahlain the 1ot solution, The term algebiric appears in the above thearem sutement
hecause the currents resulting from the gourees of the network can have different directions,
just us the resulting voltuges con have opposite polarities. '

IF we are to consider the effects of each sburce. the other sources vbviously must be
romioved. Setfing b voltage solwce to zero volls is like plncing o short corenit acrosy (s
terminnls. Therefore, whebh temsovine 8 vollugs soutte fron a network sthembiic. repluce i
witlt n direg) conmection | «hort cirem) ) of 2ero oluns Aay mtamsl resstanes aaociated with
the souroe nvEst Imnn 1 e nehwark:

Seiung o current sowee 10 zero amperes 15 like replacing 1t with an apen et Theretore:
when removing o cuvent souree from o meiwork schemate, replace it by @t gpen giromt of
infiniie ohims. Any inlems] reasiance assccinted with te sonave st Temnin in the network

The ubove stitements ane llustrated in Fig

=)

L

! o Sr, ==

O

L

FG. 31
Removing a voltage sonrce avd i cureeat sparce to perniit the applicithen
of the aupe rppexition theorem.




EXAMPLE 4.1
a. Using the superpusition thearem, determine the ¢urrent
through redistor 82 lor the network in Fig. 9.2,
Sulutions:
In order 1o determine the efleot of the 36 V voltnge source,
the curmumt dowee must be reploced by an upen-eircuit
oquivalent au shownt in Fig. 9.3, The resull is o gimple series
crrcuil with oeurrent equil 1o
E = v = nY 5
+R, 1211 + 61l s

Examining the efféct ol the 9 A carrent source reguires replocing
the 36 Vovoltage source by a short-Cirouit equivalent as shown in
Fig. 9.4, THe result is a parallel combmation of resistors X1 und 2.
Applyms the current divider rule results m
Rl (12 (X9 AY
I'_,' = |. = =HA
R + K 1241 + 6102
Smee the contnibution 1o current /2 has the spme direction for

coch source, an shown i Fig 95, the tolal solution for ¢urrent 12
15 the sum of the currents established by the two sourees. That is,

h=5L+1=2A+6A=8A

EXAMPLE 92 Using the superposition theorem, determing the
current through the 12 © resistors in Fig, 98 Note thot this is a

A,

_M—

un |
)
|3 LTI 2 §n (b} )()‘.‘.\

T

Ai. oz
Notweond 10 De setimtheesd i Loviriple 9.0 taieg (e
FPTPVE Heere

Longe wue=
reless B e aeee

Rupbishog o6 ) A carpmnil semere in £ 0D Iy
PP U Al A o o N
bl s o e ‘I

Fid &2
Bt e W W 0 O Llgesw Ay 8 e g
wosn il r i Yoometa 1l g et o M A Lo
L AT AL IR

iwe-santte network of the

type exununed in the previots chapter when we applicd branch-current analyeis amd mesh

andl ysix:

U L)

AAA AAA
vy VARS

2 hat 4

-
-
>
-

-

4

Fa 68
t"lmn Mg hes oo Hr e fos i romny the
et oo ind tdier VSN wesiaen o 9.2

Solution: Considering the effects of the 54 V suurce requires replucing the 48 V source by o
short-circwit equivalont ns shown i Fig. 9.9, The result is that the 12 Q and 4 £ rosistors are

i parullel. The totl resdistance seéen by the source is therelore,
Ry =R VR Ry=240 0 1201481 = 20 111=274{}

and the sourse ewmrent 16




dKY hadtemy
replaced b i

> ESLARIIS

FG.ns

LiNig thae el thtvme dhestovmet 3o derermttee (e apdect of Wie MOV Saliage s onr cureanl {3 o0 Fig, VA

LUsimg the cument divider nile rosulin in (he contribution o /4, dus o the

$4 V souree:

(4 (X2 A)
f - 03
I By ~ Ny an +1210 i

it we now replace the 52 Vo source by a short-citeull equivalent, the
ntwock i Fig. 900 resolin, The resalt s o puealic] connection for tho

1243 ) 24 €] resistoos
Therdlore, the total resistance seen by the 48 V wource 15

L R,

He—= Ry = RiIRy=4N +n2OQI240=300 +80 =120

Wy P

T
-

20 st LA

| -

hE

"

\
TSV buttiory e gslneand
by shirwt chremit

FIG. 910

(s the saperposition theaeam to datermne the gffect of the &8 Vundtage spaeoe gn current 4, i Fig 9.8

and the sauree current (s
£, By

R 128
Applybugt the curmenl divider mle resulls iy

- 1 {UA] . (814 A
YRR M= 120

= 21T A

Bt e e Femgrortan W reallee i current £y doe 11y cach soace las o
dilteront dirovtion, ss showi in Fig. 0.1 | The set curront therotbre i the
differeoce Ot 1wo amd o the direction of the luzger as follows

L= —L=2060A—0AA =21TA

|E=13 A
\J

R,-?l:n =S k:§|!sn

‘ ‘ |
|l’ =307 A [FrdITA

AG oM
Loy e viesttlin of BTgks 9.9 il 900 o afietiteinbive
caetentt B or e seowvnk m Frg 94




EXAMPLE 9.3 Using 1he superposition tieoreny, determune current 1 for the network (o

L
’
E= 0V ( A & Su0

FiG. 9,12
Fhuaniare tetwand o iy .m-".’j'.‘ml e the
ey feus e ores i Ectpply Y, 4

Selurinn: Smee two soirces are present, (here are two networks
to be analyzed, First let us dotermung the effects of the voliage
source by setting the current sowree to zeTo amperes as shown
m Fig 913 Note that the resulting cummont is defined as /i
because it 15 the current through ressstor &1 doe 10 the voltaege
siee ¢mly,

Due to the open elreuit, resistor B1 15 10 seres (and, in [acr, In
parallel) with the voltage sowrce £ The voltage acrose the
resistor s the applicd vollage, and curment 1" is determined by

Now for the coniribution duae to the cinrent source.

.
'II, § ()

HiG 813
Dodenstipnrng W pstire of e MOV Mesply o 20y
e ) o mlig S22

Setting the voltuge sourge 10 zero yvolls results i the
network o Fig. 914, this presemis ns with o
miteresting situntion. The curment source has been
replaced with o shorf-cireunt equivalent that s
directly aeross the current source and resistor R
Sinke the source cument tukes the piuth ol least

)

)

—— [
.

|
v
l in B nn
‘

1

-

resistance, |t
¢hooses the zero ohm path of the inwred shon-
circuit equavalent, and the corment throueh R1 s 2ero

el
-

FIG. 914

amperes. This iy clearly demonstrated by an  Deteiwining the effect i the 3 A curront sssiroe on

applicotion of the ¢urront dividor rule as follows!
_ R4 w0y
CR.+R 0O =60

I 0A

the vureent 1y in Fag. 912

Soowe 1 and I Tve thee sannes defined dhiveston i Figs 900 3 amd 9,14,

the total curmrent is defined by

L =RFEP =S8 <HPA=5A

Ao this Buas Been wh excethznt lurroduction 1o the ppplication of
the superposition (heprens 10 shonld be onppedorely olear i Pig 912
that the voltage sourve is in paradlel with the current source snd lodd

(e e R s e voltige uerons el st e 30V The tesadr o £

musl be dotermaned solely by




EXAMPLE 5 4 Using the prnaiple of superpopitivn, Lnd the current £, . =114
thraueh the 12 VAL resdatir o Fle. 962 !rm“' ,11 ==

Safurion, Comnder the etioor of thie & mA comment sommee iz U.16) ) L T “'

——— ¥ .
\ .
N §‘uu: l’;§ (34511 5 : FG 515

’ Enmpie V4
l@umt - > { »l ?)hmh
KN KE ORI ST

[

—l. oA — = : ;-?’3.’_'““ "xpv,- 1540

FlG 3

Tl et vl o surrend sonece  oim e aueremt 4
Fhe vutrsin dlvkder tule tives

=8 OROKGmAY _
N - H- 6kl - 20

Coomdenng the effecy of the 9 V voluage sonrce (g 207 givaes

E YV

=g —=% ~6wn = 12en

= 5 ma

Stee Iz ool 12 hnve the <amie direction thrauph R the ddesiresd cur-
rend is the sam ol e twol

R

2mA + 5 mA
IS mA

EXAMPLE 8.5 Flod e cnrveal Muonghithe 24X gesiativn ot (e aoe-
work i B 008 The peesamoe of Dice somrzes nonafis w e ffeeont
Aok 10 b el vacd

Solation: Comulor tw witinof e 12 ¥ soee Ty, /W 19)

FIG. & 18
Ararepole VA

e effect of & ouk e leronz £




N L, 12V 11y
Ik g g 10+ 40 60
n.g I . L Commiider tho effoct of the 6 Y somrce (g 9.24)
rl ns -s—l
= F, v 6v

= "R -k 20 -30 a0

HG 020 Cotmlder the eifoct of the ¥ A sowrce (Flg, Y210 Applying ihe ourney
Ty egioce wf €2 v i enrnvr 4 dividor mily givis

i

&

S AIA12A
R~k 20-+20 b

Theterad evmroat thoomgh the 2 0 neshmor appesrs in Fig @22 and

=

1A

ATy ArwYn L e -
sleilg vy viwmbpuly

—_—

I'!l-10 ) T'
= lA*—:u\-!:\:‘ A

The iffecs of T ot the Ll ),

9.3 THEVENIN'S THEORENMN
The pext theotem w be introduded. Thévenin's theorem, = probably one of the most
iiiteresting in that {1 permits the reduction of complex netwerks to o simpler form for analysis
and design.

In general, the theorem can be used 1w do the following:

» Analyte notworks wirh sowrces that are not in series or paralled,

* Reduce the number of components required to extabiivh the same characterisiies af the
oRTpIe levmials

* Imvestigate the vffect of changing o parviculor compaonvint
ure the behaviowr of a nevwvork withowt having o amalyze the
cutire stwork afrer vach clange.

+.
—

e ||

All three arcas of upplication are demonstrated in the examples —_

to follow.
Thévenin's theoremstates the following:

Any. e-terminal de nendark can be repluced by an
equivalent cirenit -
conyisting solely of a voltuge source and @ series rexistor as

Nlroowr in FIG. 9.23

Fig, 9.23. sy 5 ez
The theorsm was developed by Commuandant Lean-Charles Thévenin equivalent circuit.

Thevanin in 1383 as deseribed in Fig. 9.24.

To demonstiate the power of the thworem, cansider the
[airly complex network of Fig 925(n) with Its bwo souroes jind
sericsparallel connectiony,
The theorem states that the entire network inside the blue shoded
area con be reploced by und voltage sotace and one resistor us
shown in For 9.25(1)0 If the roplacement s done properly. the
voltnge across: amd the curfent throagh, the besistor RE will De the
same for each network. The value of RE can be chunged (o any

FiG. 024
LenmCingehor Pwyveonn
Commpty il the Tl b Fowe
Bt piseapm. Hama . brames




value, and the woltage, cument. or power (o the fond resistor 15 the same for coch
confrguration

Now, (hus sa o very powerful statement—one that s vernilied tnothe examplies to tollow.

The question then is, How can you determine the praper vilue of Thévenin voltage and
resistance’ In peneral, linding the Thévenn resicimee value i quite strmghtforward, Finding
the Thévenln volfaye can be more of & chollenge and, in fact, may requine using the
superpasition (heorem,

Fortuiately, there is o series of steps that wall lead w the proper valte of each parameter.
Although o flw of the steps may seem trivial at firsts they can become quite important when
the network bocomes complex:

Theveain's heorem M'rocedaore
Preliminary:
I. Remove that parrion of the notwork where the Thevenin equivalent cirenit is found. In
Fip. 9.25(a), thiy reqtiires that the load resistor RL be temporarily eemoved from the
netvark
2 Mark the termiinuls of the remaining nvo-geravinal nepwork. (The beportane of this step
Wl becomy obvivus ax we progress through sope complex networks ) RTh:
1. Caleslute RTh by firss setting wll soturces 1o zore (voliage sonrees are replaved by shiort
vircwdes and curvent sostrces by open cironitd aod then finding the resultont resistance
herween the pve marked terminuls. (If the inteenal resistance of the voltiage andior cirrent
Nources is fnoluded i 'the veiginitl nebeork, it muest remiain when the spurces are ser v
zere) ETh:
d. Caleulure ETh by first returning all sources o theer ariginil position and finiding the
apan-cireatt veltage between the marked tevwinals. (This seep ix invarcably the one that
canyos most canfusion and errorc In all cases, &keep in mind that & is the open-cirenit
potential Beoween the two tevovinals marked in step 2.} Conclysion:
3. Draw the Thévenin equivadent civenit with the portion of the circait previousdy removed
replaced between the terminals of the equivalent cirenit, This step & indicated by the
plucement of the resistor RL ketwden the terminals of the Thévenin equivalent cirenit as
s n Fig, 9.25(b),
»

-
v, - =ty >4

i
FIG. 935

Sihtisiibing the Lol @bt ubent st i gopples il

EXAMPLE 9.6 Find the Thévenin equivadent circuit for the network in
the shaded area of the petwork mn Fag. 9.26. Then find the cument through
Ry for values of 2 £, 1042, and 100 ).

L ¥4




Sofution:

Seegtn gt T These prowduis the pectwak (8 g, 037 Noes hat the Josd
veihan Ky s bovar ovaanrved and the two “holdme™ waunnals bave boun
defmed us o ond & ’

Swp 1 Meplaceng the yoltags vonres & with a shorr et expanvalant
yaokin the s imd o Fags 258001, whine

(YOG
T34 s 6t

. | AN =

A = R R

-
q:,"' —_—

" - —

ra_s2e
I termaming Haw A e ewiwnr€ e Fig. 037 G 927
Hivpaifiny e Sosands o) urticuiliny’
The mmpottarsse of 1he Vo nrabal tormrnads dos bogins o ssarfaoc R TR s

They mmm the two wrmimals ssroes whizzh thie Thidvemn r=stance s Thawin' s theseer
rommlied. 1 de o Booger the cothld testatnnog ue sodty by (I soaive, us
aleterrniivvesd i e smsgjozils ofF preddelevnns o Cluspibey 70 0 s ola)Visuiley
devolops when @mermining #7y with mgard . whether the rosistive
lements ars b seres of parallel, conuudes srcalling thiy s olnnmetsr
scods catt U orichle cumesd o resiabive combloaiion asdd senses the

level of the resulling vollage to establish the micasured resistance
level. In Fig. 928(b). the trickle current of the ohmmeler approaches i
the network throbgh wimmunal o, and when it reaches the junction oI R ST

angd A2, 1ivsplits ps-shown: The e that the irickio curremt sphius ml Sy sedsfeminedio fg 437
then recombines o the lower node: revenls thay the resistors pre in "
purpllel as far as the chmmeter reading 15 concerned. In essence, the L '\\ @

path of the sensing cumrent of the ohmmeter hos revealed how the r=n m30

resistors are comnmected to the two fermnals of miterest and how the ' adegur”

Thevanin: reststance shoukl be determined. Remember this as you v

work through the varivns examples m this secting, Ve w'w??-:w-'w-r

Swp 40 Replice the voltage source (Fig. 929) For this case, the -

apencireutl voltage ETH is the sume o the voltage drop across the 6 Q Ao =311

resistor. S ICED

Applying the voltage divider rule gives B
Rl _ (SNOVY MV v

R, + R, o il + 311 B a Nabaltung don Thisatin vewasfint Uvia A L
cannd watend b MOk By XN

Eﬁ=

I s partichilarty roportant bo recogniae thi £, o the opem-cinoniil
poteatial Betwesn pointe o and A Remember thit al open cirenit can
have uny voltage aerons 15 but The curcent snupt be zons T Lact, the cur
rond through any eloment in series with the oped clrotit mudt be 2o
ulsiy. The whe oF w voltmeter 1o ity £y, sppeans in g 930, Nowe
thatt I s placed directly weross the realstor 8 slaee Eqp and Vs in
prarzlivd
Ntep 52 \Fi=. 9311,

£n
Ry v &

LAY -
R, 2 I =99 s 30 — 15\
oV
R 0Q =—=1F A
el h=3meoon !
6V

Ne 100 1): 5, = TS 1) = 0 A

']=

I Thévenin's theorcin were unnvailable, cach change in & wiomnid
regpuire that tha entine aetwark in Py 926 he rescamined o find the
new vulue ol 8




EXAMPLE 9.7 Find the Thévepm eguivalent ciretnt for the network in the shaded prea of
the netwark in Fig 932

Salution:

Sweps }and 2. See Fig 933,

Step 30 See Fie 934, The current sowree his been repliced with an open-eireut equivalant
and the resistunce determined between terminals o and &

In thes case, an ohmmoetor contected between letmuinals o and A sends out o sensing ¢urront

thot Nows directly through R1 ond R2 (ot the same level). The result is that' R1 and &2 arc In
senes nnd the Thévemin resistance s the dum of the two,

R17,=R| +R3=411 +20=610

Ry

AW

24}

=

FIG. 9.33
Esiablishing the terminals of particular
Lf:fn:)z:;z" interest for the nemwork in Fig, ¥.42.
Ny sV, =0V -
Wy WA .t
b A

Ky =244

—e

. -
(VR e268 10t
u,§u: n.§m

.
—_—
—
-

| B
I g;“-dv t.§?|1
: |

FG. §.34 FIG. 3.35
Reserminnig Nes 1or the vk,

g Fde ') 12

FIG. 8.3
Sulewtiwdiey Ve Thivouim oxgarsadent evwviil on e
ek ¢ 00t s 20 prsastiow Ny ot e v 12

fwvivrmmg £ gy o e netn ok

(d Fly 03t
Swp 40 See Fig 935 In this case: singe an open circu exists between the two marked
termunals, \he cument s zero between these termunals and through the 26 resistor The
voltage drop scross 22 is, theretore;

I2=RRR=)R2=0YV

Al ETh=V1I=NRI=IRI=(12A)(4 =48V
Swp 5 See Fig 936 7,
ENXAMPLE 9.8 Fuxl the Thévenin :
eqinvalent circuit for the network in
the shoded wren of the dotwork in Fig, - X
9.37_Nute In this example that there is ~ #28H bz
o need tor the section ol the network
(0 be preserved o be at the “end™ of
the contiguration;




Solution:
Stepy L and 2 See Fig 938

>
11‘3‘42

FIG. 9.38

Ktentityhbsg the téomisals of particular inrevest for the wehvook n Fiy, 937,

Clroult redratun!

'
“Shor s ated

Re= 041|200 = 1)

FIG, 939
Determmimmng Ry for e mevwenrk an Fig. 908

Step 3 See Fig. 9,39, Steps | and 2 are relstively easy to apply, but now we must be careti
ta "hoid" onte the terminals« and A as the Thévemn resistance and volfage are determined. In
Fig 939, all the remamng elements turn out to be mn parallel, ond the network can be
redriwn as shown. We hayve

(6 id 0 24 ()
= : | = - — — - 2
Brve = RulLRs 60+ 40 10 244

8.

AV~A i
i1 '&’:%4 {

b BN

FIG. 9.41
FIG. 8.40 Netwon® of Fog. VA0 redoow
Dereemming g for the menwark im Fige @38
Step 4: See Fap 940, Inthos ¢ase, the network can be redrawn as shownm Fig. 941, Smee
the voltoge 35 1he same across parndlel eloments, the voltage gcross (he seriex resiars B and
R2 s I1oor 8 VO Applying e volinge divider rule gives

Ry  (6IisVy 45V

= = = 48V
R, + R G440 10

En =




Stop 3 See Fig 942

ENAMPLE 9.9 Fuxl the
Thévenin oquivalent cireut foy the
network in the shaded area of the
Bridge network s Fig 943,

- FIG.9.42
Sulsstiiting the thevenln equivalent circail Jor the
network exierndf (o the reststor Ry in Fig, 9.37.

N
6l S N

FIG. 2.43 tdenripviag e termingls of porrtcelar mterest for o
Eswampie Y.9. mehvook i Fiy. 943,

Saolution:

Sreps L amd 2. See Fig 044

Swp 3: See Fig 945 o this cose. the shon-cirewnt replacement of the voltage source £
provides a direet conneclion botween ¢ ard ¢ in Fig 9,450y, pernutiny o “folding™ of the
actwork around the honzontl lne of @-5 to produce the conliguration in Fig 9 451b).

Ry = Ry o = R ||[Re + Rl Ry
=603 =44[1280
=20 - 31 =510

FG. 5.45
Selviug for Ry for the noswork in Fig, 944




Step <4: The circuit is redrawn in Fig. 946, The absence of a diredt con-
nection betweon g and & results in o network with three paralle! brmnches.
The voltages V) and V. can therelfore be determined using the voliage
divider rule:

R (6 LANT2 V) 432V

Vv, = = = — 48V
' R -R. 60 =30 o %

RE (12 QNT2 V)

Va = - :
Ry + Ry 1241 + 411

FiG. 9.486
Determuning Iy for the netwark in Fig. 9.44.

Awvuming the poluney shown for £y, and gppiyiog Kirchhoff's volr
e law 1o the top loop Inibe clockwise ditection results in

SV= B =V — =10
and Ep = V.= ¥ =3V - 48V =4V

-
—
-
| —

N 50 See Fig, .47,
Eirs 947

EXAMPLE 9.11 For thé néiwork of Fig 9.54,
a Find the Thévenin equivalent cireuit tor the

portion of the tetwerk in the shoded area.

b. Reconstruct tise network of Fig. 954 with the
Theyemn equvalent network iy place.

¢ Using the resulting network of pan (b)) find
the voltage Fa.

Solutions:

a. Srepy & and 2: See Fig. 955, ‘
Step A See Fig. 9516, -

FiIG. 954
i o Ee

Re= 12030 +60=120(100=3

Step 90 Applymg the superposstien theorem. we will first Hod the
effect of the voltnge source on the Thevenn volige nsing the network
of Fig 9.57, Applying the voltge divider rule:

12QU8V) 216

§ : = =982V
6L + 446+ 1210 22\ ?

) —
LM -




=~

W

r— 4 )

0Ll @ 7 ‘
A e
m
q £ 2 EaE
& - ':T-l
=

£y I8V

‘ O

FIG 95
Foriehhzliing thee bersmeindiy oof dibfesiv st
fieene et af Foy @5

FG 258

HG 9sa
I derminine Ry,

FIG. 957

BNy W comprifatinus o' £ far Detednrining (he veadrstratoon of £y 1o Fy.

Tl comtrpbutnins ddues fo (e curretth source (s delefmined s (s
oerwark of Fie. 0.535000 redrawn as shown in Big, Y3000 Applving
e et divader rok
40024 )
10 + 1% n
Ml Ef= -M1201= 05383 A2 ) = 437V
sothut Egp = £~ By —WA2YV - 357V = §45)

A U3 A

I Tl emconstincted etk 4 snin b g 484
e Ulkingy Hhe ol slivider e

KIMISASY = 16V S0 45 iTin

4 SASf} =54 154 1345 \ 1276\

Distesseb ool nscange Uhe stpaegiast i theomen, the curnen| sonfjoe Cowld fiesd
loVe oot convedted 10 a voltage sow'ce and e series elements com
bined (0 determone the Theveam voltoge Te my event ey approaciies
solld fiave yieldad the e resats

Vidvenld vipivalooy =

FG 958
Applving the Thivenin aquivilont antwiork o) the
meswork af iy, %54,



SANORTON'S THEOREM

Any two-torminal livear bilareral de nemwaork can be
replaced &y an

ciprivalent ctrewit corsisting of a ctrrent souree and o
praralle!

resistor, as showat in Fig, V.65,

FG.9%.64
== ; Edward L Neortion.
Regrinted with the permisslon of
FIG. 9.65% Luocent Technologies, lnc/Boll Labs.

Nowtorr eqpitiatlen? corentt

The discussion of Thévonin's theorem with réspeéct lo the equivalent éircuit ¢an also be
applied to the Norton equivalent circwmt. The sleps leading to the proper values of IN and RN
are how listed.

Norton's Theorem Procedure

Freliminary:

I, Rewove thut portion of the network acrosx whecl the Norton egnivelenr clreuit iy firund
2 Mark the ternvinals of the remaining owo<terminal wenyork,

RN:

3. Caloulate RN by fiest seting all sonrees to eve (voltage somrces are eoplaced with sharr
circilty and currem sources with open circuirs) and then finding the resaltant rexistunce
hroweene the twe marked tevainals, (1f the inteenad resistance of the voltage and’or curvent
senrces iy included In the ongingl neowerk, i must vemain when the soprees are set in
ore ) Since RN RTh, the provedury and value obuined using the approuch describeéd for
Thévenin's theorem will determine the proper value of RN,

IN:

I, Culenlute IN by first retirning oll xourceés w their vriginal position and then finding the
shori-circuit current hepveen the marked terminaly. It is the same current that would be
nicasurad hy an ammmiezer placed berween the aurked torminais,

Conclusion:

3. Divaw the Novton aquivalenr ciecait with the porting of the ciecuit previoasly removed
replaced denvvon the rerminals of the equivalent cirenit.

The Norton and Thévenn equivalent cirouits ¢an also be fotmd from cach other by using the
sotree transtormation discussed carlierin this chuapter and reproduced in Fig 9,66

Wy

By = By
=—Epy, = IxRy

I::

T

FIG. 9.66
Converting berween Thévenin and Norton equivalent circuits.




EXAMPLE 9.12 Find the Notton equivalent circutt for
the network in the shaded wea in Fig 9,67

Solation:

Stvps 1 and 20 'See Fig, 9.68

Step 30 See Frg, 9,69, and

R\"‘ RI|R:'—}u""! .

Step 4 See Fig, 9.70, which clearly mdicates thuy the
short-circuit connection between terminals o and & s m
parallel with 82 and ¢liminates its eftect. IV is therelor
the sume by through 1, and the full battery valtage
appears deross Rl since

fo= LR = ()60 = OV

Thereloye.

REG M E8
ddermifyeng the teomunale of parscslir istéoed for
i setwied iz Fig VA&7
Step 3 See Fig, 9.7V This ciromt 1 the same as the first
¥ one congidered in the development of Theyenin's

—""_' ﬁ' theorern. A simple conversion indicates that the
Thevemn circuits are, in fct, the same (Fig. 9.72)

fy Sl -

- ¢

1

=0

I

-

O a2 ¥
Determsing By v e aeterhomn Fg S0

Z

Shuet clrenined

FIG. 970
Deternining Ly e the netwisek e Fig. V.68

Wi -&- n U
' .

i ) I A I ¢
d)-'.: ia glﬁ A ) §Rv = e = fn = IR = D210 =6V
l' ) ] i
4 .

= ; . =

MG 5.7 rG. a2
Subaioaing 1tie Sovon oguisidlear creced iy e Convering e Neevowr equovinlem coeinrm B 9 T a
ek xS\l 1y e g alatit' Ny Doy Bis w40 Hrevewdn pguaspdond L))

EXAMPLE 9.13 Find the Nonon equyulent cireuit fur the network
externad 1o the ¥ sesistor in Fig Y.73

Sulution:

Step Lapd 2 See Fig 9.74




Fovamtpde U1 4 Wentifvinde the serminuly of'
particibar mterest for fhw metwork m
Fig U1

Step 10 See Fig 035, and (—

Ry =R+ R.=501 +31=90Q

R =40
Seep ¥ Ax shown in Fig. 976, the Noooo current is the same ay the our- ' §
rent thromgh the 4 L waistor. Apply ing (he cument divider rale gives L
]! SN0 AT U =
L = =BA _ cxa
Ry~ R 541 =41 Y FiG. 978
S 3 See Hig:9.77 l)etrmnnm(;"l:'; [:r.tjw setwork in

L=

[ 4' ) |

P.';gan M »n_.gm ! m,xk'g'n

l.

FIG 376 FIC 977

. v Satesrinanay i Neroow cgwestfons o comn e e
Determtining fo e the setviesk intie ¥4 ‘ A
! g =~ etk extertd! i A resiwion Ny in Fig 9.7

EXAMPLE 9.14 (Two sources) Find the Nortor equivalent cireul! for the portion of the
retwork to the Tett of a-bin Fig. 9.78.

l
3 Do

5 AR

“

v

. AG a7
Lidentipying e deewsnsly of pririnlar bntesesy FIG. 8.78
(o0 thw metwork i Fir. W28 apie ¥ 04,
Solution
Stepay 1o 20 Sez Flg_ 079,
Ntwp 28 Sk Flp. WRO, and
a6 240
411 + o} in

"‘,\—'Rli'R:—“!!;h’!b — 2449

Stepr 4 (Usling soperpocition | For the 7V battery (Fig 9.81),




Shiet :it..'lhtnl

a1l

For the 8 A swve (Fag 021, we (od du buly 'Ry wod Ky biye bevs
“ahird chronated” by W disec! conmegtion between o aml b and

L= =3\

The resafy 16
Iy =0 1y =8BA — LISA < 628\
, St £ Sex Hig V.82
Leterminmg thr coprrihsaion 1§y fromy tee yoltage
soarce L

9.5 MAXIMUM POWER TRANSFER Shums cncsitad
1,?40 ! KA t:‘gsn 4 s
! ' T ‘ X

= ¢

PG, 0.82
I teamening e pontaligtann o 1 fedme S g wiy el
Sulvetleiitlng e Mostien reglyesborns el iy thae messleud 2o the Leit ol st J,
rermiady W frap Kig AN
THEOREM
Whon desigrung o ciredit, it 15 often important to be able to answeor onie of the fullowing
questions:
Whar logd xhoudd be applivd 1o a sywtem (o coxure that the load iy receiving maximum
prower from the system?
Conversely;
For a particnlar Inad, whar conditions stoald be fmpased on the sonrce to ensiee thart it
will detiver the mmeximume power avallable?
Even if 3 load cannot be ser at the value that would result in maximum power transier, it is
often halpfl to huve some idea of the value that will depw maimum power so thit you van
gommpare it o e load ot hand, For instance, i s desien calls for o Toad of 100 €0 to ensure
that the load receives maximum power, using g resistor of 1'Q or | KO reeults ina powet
transtor that is muoch less than the muximum possible.
However, using a load 0f 82 £2 or 120 £ probably results in a fairly good levél of powet
transfer. Fortunately, the process of finding the load that Will receive muximum powet frof o
partieular systern is guite strmplatorward due to the muaximum power transfer theorem,
which states the: feliownmg
A logd will receive maximum power from a neowaork when its eesixrance is exacey equal to
the Thevenin resistance of the nerwaork applicd oo the Inad, Thar ix,

=] 9.2

1o otheor sworde. for the Thevanmm pgeeyafenr grrondt in Fig W84, shen the
T B B LT A UL KT N T T IT AT BT T F R | TS PRI R | I T T |
s podwes Lo e et worde

Eissmge Plge &0 L Uil Ay Nyn, e cant sk=terrriibie st i
power delivared 1o e losd by first finding tha curront

' L "'. ' "
N LT s A0 o
L e L L L T T L O S TR TR SN (O T R L T T L A T e Y e T

. Bl usirie the Thevenin egidvadlens vireiit.

ENiRa

4R

) =

B~ N~ (,."’J‘:(':,.):‘F"'. -




ond == _ (9.3)

The rotul power delivered by o supply such us ETh is absorbed by both the Thévenin
equivalent rexistance and the load resistance. Any power delivered by the xonree that does
nor vof to five Tvad ix Toxt to the Thévenin resistance.

Inder maximum power conditions, only half the pewer delivered by the source gots to the
fond. Now, that sounds disastrous, but remember thal we are starting out with o fixed
Thevenin voltage and reststunee. and the sbove simply twlls us that we mus make the wwe
resistance levels equal if we want maximum power to the lead, Om an efficiency basis, we are
working at anly a $0% level, but we are content because vwe av getting marintum power put
of onb- Vs
The & oparating elficiency is defined s the rtio of the power delivered (o the load (PL) 1o
the power delivered by the source (Ps). That is,

7,
N = 5 X 100%

For the situation where R, = Ry,

3

IR R R
o = = X 1000 = — X 100% = ——=— X 100%
© IiRy Ry Rp + Ry,
Py oo = L 1006 = s0%
R | 3 X y = 3

I efficiency is the overriding foctor, thers e brad should be mieck larger thue the tateraal
resistance of the supply, 1f maxipium power transfor iy desired and efficiency fess wf 2
concern, then the conditions dictated by the maximum power transfer theerem should

be uppliod.

A relatively low efficieney of SOV can be tolerated in situstions where power levels are
relativiely low, such as in o wide variety of clectronic systems, where imaXimimm power
rranster for the given system 1 usudly mare important. However, when lurge power tevels
are fvalved, such as m geperating plams; efficiencies of 30%) cannot be tolerated. Tn fuct, o
great deal of expense and research 15 dedicated to rasing power generating and \ransimission
efficiencies p few percentage points. Rammng an etfficency lesel of a 10 MW power plant
from 9%, 1o 93% fa 1" incrense) can save 0.1 MkW, or 100 anlliom watts, of power—an
enwrmecs saving. ol of the above discussions, the effizet of changing the load wis
discussed for o fined Thévenm resistance. Looking at the situation from o different viewpaoind,
W can sah

if the loud resixtance is fixed und does ot match the applied Thévenin équivaleat
resistance, then wwme ¢ffors chpuld be munle (if possibie) 1o redesign the systent so sthat the
Thévenin eyguivalent rexixtance is cloyer to the fixed applivd lowl

It othier words, if a destgner faces o situation where the lood resistunce s ixed, b or she
should tnvestigate whether the supply section should be replaced or redesigned to create o
closr mutch of resrstunce levels 1o produce higher levels of power 1o 1he foad




For the Nomon equvalent eircuit in Fig, 9990, maximum power will be deliverad 1o the load

when ,
RIL=RN e (9.5)

This result [Eq. (9.5)] will be nsed o its

filbost slvantage in the analysis of transistor

networks, where the most frequently spplivd " -
transistor circutt mode] wees o curment source ’—,1
rathet than o voltage source.

Fuor the Norton cireuit in Fig 990, . RN§ ?Rl = R

=

To demonsirate thal maximum power s FIG. 9.80
mdecd translerred to the load
under the conditions defined above: consider
the Thevenin aquvalent oirewmt in Ing. 983
Hefore getting into detml, however, if you
were to guess what value of RL would remilt
maxinsmn power tmsier to 82, you migin think
that the smaller the value of 8L, the belter il is
because the current reacles & maximum when o
te sipuared 1 the power eyuntion, The problem
i< however, that in the eguntion P2L=12
LRL. the lond rosistance i< o multipiior. As it gels
kmuller, it fortms a smaller product. Then agai, AG. 9.85
you mught sugeest larger vidues of RL Because i i equiviatent metwork o e waed fo validute
the output wlrngc. moreases, and. powar = e mutsimur powier tritnsfor theavem.
deternuned by PL = 1" 2 L 'RL This tme,
however, the load resistance 5 i the denomnator of the equution and causes the resulting
power to decrease A halance must obviously be mnde between the Toad resistance and the
restlting cyurment or voltage. The (pllowing discussion shows that
maximum power teansfer eccurs whon the load voltage amd curvent are one-fralf their
mavintum possible valyes.
For the cireunt m Fig, 9.85, the current through the Toad is determined by

L 6OV
Ry — Ry 92 - Ry

Il voltiee is determined by

Defining the conditions for maxinum power 1o a
lowd using the Norton equivalent circuit.

lL_

R""':,"' . RL(M) V. )

vV, = —
"R+ Rn Ry Ry

and the power by

Pp = IR, = (

v Y AGOOR,
Ry ) =

99 TN - R

Howe tahirdnie the three quantities versos a cange of values Tor K, from
(1 1) po A0 L0 we oblaim thie resulis appearnine im Tuble 9.1, Note i
paarticular thot swhen B s cqunl b the Theéventn resistunice of 9 83 the




power has o maximum value of W, the current 1s 3,33 A, or one-half its maximum value
ol 0,67 A (s world redult with-a short <treatt across thie output termainals), and e voltage
geross thie loud 15 30V, or one-hall

its maximum value of 60V (g5 woulld result with an open cicuit peross 1ls output terminals ),
As you cun see, there 15 no question that muximum power is transferred 1o the load when the
lond equals the Thévenin value.,

The powet to'the lond versus the range ol resistor values Is provided it Fig 9.86. Notw in
particulnr that Tor values of loiad resistance less than the Thévenin valui, the change is
dramatic as it approaches the peak value. However, tar values greater than the Thovenin
valpe, the drop 5 oo grear denl more: gradunl. This s mmportant becouse 1t tells us the
following:

If the foad applied ix less than the Thevenin resistance, the power 1o the load will drop off
capidly ax it gets smaller. However, if the appiicd toad is greaver than the Thévenin
resistance, the power to the load will wot drap off as vapidly as it increasvs.

In all «f the ubose disclissions, the effect ol changing the load wis
disnased for g fixed Thévenmn maitance. Looking st he situmrion from
n hfferent viewpoint, we can say

(f the lvad reststince & flead and does not masod the applicd
Thivenim equovalem rexsstunce, then somee offort sivoulif Br avale 1if
pocsiivie ) i eodesign dve syooem so thay the Thevenin equivalont
rexistance o closer to the fevd opplied load.

I uther words, if o dewigner Bioes s tituation where the losd reaistatico 18
fixed, he ar she shamid investigato whather the supply section should ho
teplaced vp redesigned W oreade A closer malch of teslaunes levels (o
AG. 990 produce highet levels of power (o the lomb
efvmng the condinoay for maxmmm power b a For the Nurton equivalom cireunt in Fig. 9.9, maximum power will
lvend txing the Nowdor equivafens eircnt. be deliseresd tor thye kad when

(= 7] 05

Thin result [Tig. (9.5)] will be used 10 it fullesy advantage in the analysis
of transistor ndtworks, whero the momt frequently spplied transistor
cireuit model uses o cureent source sallser thuy o voliuge souice

For the Normon cirost i Fuge. 9 5K),

EXAMPLE 9.15 A dc generator, battery, and Inbortory supply are
coaneated to resistive load B in Fg. 9.91,

a. For cach, determine the value of K, for masimum power transfer to X,
b, ‘Uinder maxumum power conditions, what are the current level and
the power 1o the load for each configamtinn

. What 1s the efficiency of operation for each supply in pant (b)?

. If a lood of 1 k£2 were applied 10 the laboratory supply, what would
the power delivered to the lood be? Compare your answer to the
level of pant (b). What 15 the level of efficiency”

. For cach supply. determine the value of £ for 73% cfficiency.




o e gt (3 Latwwanory swpply

Solutions:
u For the dc gencmtor,

RL=Rn=R.,.= 50

Faorthe 12V car battery,
Ry = Ry = Ry = 00502
For the de labormtory supply,
& =8pn =R, =208
Fou the de gencrator,
2 2 > 2
P = -3::, B 42“, b -.t::_u*\([;)

Far the 12 V car bartery,

p, =th_ . E _ U2V
=" 4Rp 4R, HO05 1)

For the de lubormory sapply.

3 = 40 V3
= B — W
P = 3. 3w, 3200

They are all operzting undera SO%. efficiency level because & = Ky
The pawar 1 the lood s determiined as tollows

E = 4oV 40NV
R, + R, 200+ 100002 (0200
uidd Pr = I£R = (M2 mAY (N0 1) = 154 W

lLI

= .22 mA

The power lovel s miunificuntly less thun the 20 W achieved
part (b). The effmicicy level is

A [ S4W [ S4W

G = —=x N% = 10 = - < 100
" P, B, ¥ T @0 Vi39.22 mA)

| S4W

T1STW

10D = 98.09%




which s markedly higher than achieved under maximum power
comlitiona—albeit al the expense of the power level,
. For the dc gencentor,

& = RL ] .
n= P =monm decimal form)

__ &
T R+ Re
nRn + R = R
nkn + ik, = H
Rifl — m) = nlp,

oRr

AR‘:I_"

07525 0)
t="_qgm;s -8
For thee hattery,

~ 0750.05 01)

| —075 L8

For the Liborory supply.

0TS0 )

=T _o3s Mo

EXAMPLE 218 The madssbe of & manststhe seswind et in the
redieed adtrivaleat v Figl V.92

<
HrmA K, 3 : o Find the load renmtance e will seaull o ossyism power tansdée
o Wi Bk, saened Troed thae snas s povwes dolivered
- b 0 the Jsed wose changed to X 1), wuuld you expoct u luidy ugh
leved vl ppwer tranater o the Joed based on th resulis af pon (w27
nG.awm W sonld (he e piober sl B 1s v ane (il st
Luwilé v 16 veninied?
1 e Loud mere changsd o 82 LEL wotld you etpeet o fuirly fugh
Soved o povivwn tromgsfer se thr (st Smtneed ool the peamlpa wf puuy (ng?
Wit wuuld 1he new peser Jesel be? (s vour linl sougiion
venifed !

Solutions:
4 Raphucnag sherswromt s by an apen<ors i eguoaaient resafts m
A= R=40W42

Hastiniol e corrent sonire and Tiding e afwnciculd voltupe lit
the: vumpat termmats resads 1n

Ejp -~ VL < R O imANa0 kL) ~ d0nY

.

P maxhnibm powicr tramiles to the Nand.
KN, kD

with & mtoomm pooey Sesol of

_Hh _ H0vr

= Ay wADRIN




b Yes, because the 68 K4 load 15 greater (note Fig. U.56) than the
40 k1Y lead, bot relatively close in nuenitude.

K 00V 400
R = R ADKDL + 65K0 108K
By = I3R = (37 mAFi6E k() = 095 W
Yes, the power avel of 093 W compared 10 the | W kzved of pan

(a) verifies the assumption,
Na, 82K60) i quite 2 bit less (note Fig. 9.86) than the 40 k12 wilue

En 400\ 40V

"=

= 1TmA

I,. = = $35mA

Ry + M, 30kQ + 82kl BH2k0
B =178 = (R3ImAFE2 UL = 05T W

Yo the power level of 0.57 W compured to the | W level of pan (a)
verifies the assumprion




CHAFPTER-05

AC CIRCUIT AND RESONANCE

Direct Current Alternating Current
v v
iT > iT f\./ <
1 —> t —>
()| D.C. always flow in ome|(1)|AC. i one which reverse
direction and whose magnitude periodically in
AT divection and whose magnitude
undergoes a definite cycle changes
in definite intervals of time.
@ 15 o cost of produiction. {2y | Low cost of production
(3) : Fas m (3) | By using transformer A.C. voltage
i3 pf’s‘“ble by D.C. can be decreased or increased.
Because D.C. is dangerous to the
transformer. A.C. can be transmitted to a long
(4) )| distance economically
Its transmission cost is too high. ;

Definition of A.C. terms :-

Cycle : It is one complete set of +ve and —ve values of alternating quality

spread over 360° or 2| ] radan.

Time Period : It is defined as the time required to complete one cycle,
Frequency : It is defined as the reciprocal of time peniod. i.e. f=1/T

Or

It is defined as the nimber of eycles completed per second.
Amplitude : it is defined as the maximum value of either +ve half cycle or —ve

half cycle.

Phase : It is defined as the angular displacement between two haves is zero.




OR
Two alternating  quamtity  are in v
phase when cach poss through ther zero 1
vitlue dt the same mstant and also attain v T
therr maxmmum vadlue at the same instant in
a-given cyele. il t—

"=V, smwr
=1, sinwit
Phase Difference :- It is defined as the sngular displocement between two
alternating quantities.
OR
I the angular displacement between two waves are not zero, then that is
known as phoase difference. Lo at o particular tme they attam unegual distance.

v
o A

OR

Two quantities are out of phase if they reach therr maximum: value or
mimmum value at different times but always have an equal phase angle between
then.

Here V=17, xin wit

¢ = dysin (wi=gh

In this case current [ags voltage by an angle *¢°.

Phasor Diagram :
Generation of Alternating emf :-

Constder » rectungular coll of *N™ turns, area of cross-section is *A” nt” is
placed In
s-axis i an uniform magnetie field of maximum Nux density B webme . The
¢otl 1§ rotating m the magnetic field with o velocity of 'w radian © second. At
time t = 0, the coil 15 in x-axis. After mterval of time *dt” second the cotl make
rotating m ant-clockwise direction and makes an angle 07 with x-direction.
The perpendicular component of the magnetic field is ¢ = gn cos ny

According to Faraday™s Laws of electro-magnetic Induction



i
=-N iuﬂ" cosud)
dr

=—N{=i, weoswr)

= Ny, sinwe

=2aNg_ st w=23)

= 29NB_Adnwt

e=4£_snwg
Where L, =27NB_A

' —sfrequency in Hz

B, — Maxmmum flux density in Wh/mt™
Now when 0 ar wt = 90"

e=Ey

e,  E,=2xiNB,A

VEN: ./
‘ NGB 2

Root Mean Square (R.M.S) Value :—

The rm.s; value of an a.c. is defined by that steady (d.c.) current which
when flowing through a given circuil for o given time produces same heat as
produced by the alternating current when flowing through the same circurt for
the same time.

Sinuscdial alternating current 1s

i= 1, sinwt=1,5%in0

The mean of squares of the mstantaneous values of current over one
complete cyele

.
-1

_ J' il

The squure root of this value is
_ Ifiuda
5 I -

=JI—"-’3"”"4M

~IT



= J dn’ o

.'

-Jg} j‘(l-uh‘ﬂ 'd7

= e I(l —cos 20 e
T

’1,-"0,51:\20. "
4=l 2 b

JL’_ [?:r_mnj: !‘m

b 4.
2 2
] =0707 |

Average Value :—

The average value of an alternating current is expressed by that steady
current (d.c.) which transfers across any circuit the same charge as it trunsterred
by that alternating current during the sae time.

The equation of the alternating current 18 1= 1, s5in 0

=" 4ol
}{7-0)

=_.j..{:'_'s_hﬁ[{} =£~jglnﬂ.cﬂj
4 v
.'_.l ‘)q‘()l’ [ Loy — ‘Q‘O‘uul
i

o

- [1—0¢-1)]

<2

2x Maximum Current

Joi=

T
Hence, 1 =06371

The average value over a complete cyele is zero.



Amplitude factor/ Peak factor/ Crest factor :- It is defined as the ratio of
maximuim value to r.m.s value.
- MaximumlValwe 1, JI= 1414

RMSValwe 1,
g2

Form tactor : - It i1s defined as the ratio of s value to average value.

Kf = rastaloe 07077 A —i.414
AvergeeValye 06377 Moo
Kf=111

Phasor or Vector Representation of Alternating Quantity :—
' Ay

A'IJ

(:i/\ - 2z

An altemating current or voltage. (quantity) m a vector quantity which
has mognitude as well as direction. Let the dlternating value of current be
represented by the equation ¢ = B, Sin wi. The projection of E,, on Y-axis at
any instam gives the mstantancous value of alermating corrent. Since the
mstentaneous values are continuously changing. so they are represented by a
rotiting vector or phasor. A phasor is a veetor totating 2t o constant angulut
velocity

At 1,0 =£_ sinwy,

Al ¢ e = E_ sinwt.

Addition of two alternating Current :—

Let ¢ =E_ sinwr

. =&, i —¢) : E
The sum of two sine waves ol the same .
frequency 15 another sme wave of same &
frequency but of a different maximum value and E-
Phase.

o= Jci +el 4200 cusg
Phasor Algebra :—
A vector quantily can be expressed n terms of
(1)  Rectangular or Cartesian form
(1) Trngonometric form
(1) Exponential form



(i) Polor form

Easn g

E=u+ih
= f(¢ostt= fsml)
Where a = E cos 8 1s the active pan
b= E sin 0 15 the reactive purt

.
#=tun | = | = Phase angle

J= =107
=180
fl==H270")

=1 (3607)

(1)  Rectangular for :-
E=a=xjh
il =b g

(i) Trigonometric form :-
E=F(cost? £ juin 0)

(iif) Exponential form :-
E=Ee'

(iv) Polar form :-
Fefze  (E=va b

Addition or Subtration :-
Ei=a,+ /b
E-=u, + i

EzE =(a+a)=(b+h,

g

@ =t '

/r| - '!: '

o, |
Multiplication : -
Ex E=(u,+ Ju) 2l + iby)

= {au—hb) + flaas = hby)

E ¢os 0




= lﬂ{’;:"ﬂ ‘
\ u‘..'_ —r’),’r
E=EZf
=L,
ExE =EE. Zd=¢
Division :-
E=EZf)
E.. = ('_.
E. E.Z0. K -
A.C. through Pure Resistance :—

Let the reswstance of R ohm is connected peross o AC supply of applied

voltage

¢=E sinw

i ]
R-————%V
W

Al

X
¢ = Euwsin W1 or v = Viasin wt

Let *I7 s the mstantancous current |
Here e =ik
=i =R
f =L sinwt/ R

{2)

By comparmg equation (1) and equation (2) we get alternating voltage
and current in a pure resistive cirenil are in phase
Instantaneous power 18 miven by

P=¢i
= E, sm wt . [, sinwt
= B by $I0™ W1

*at

2sin” wit

e=&ﬂm§&
| = Imsin wit




A
Where —= —=is called constant part of power.
S Nl 3

v . <
Yo L cosair is culled fluctuatmg part of power.

2
The Auctuating part

/ Via 5
== cosZar of frequency double that of voltage and current

waves,

_—
]
e

Henee power for the whole cycle is #=

()

i
>

== ["=VI watl

-

A.C through Pure Inductance :—

Let inductance of *L™ henry 18 connéeted across the AC. supply

{2
p—

V= Vasin wi

v=F_sdmwi {1
According to Faraday's laws of electromagnetic inductance the emf mduced
across the mductance

i

oS! L
dr v = Vs wt

di . : -
— s the rate of change of current i =ty w2 D)

. ol \
F_smwi= L—!; .
‘ -
di  F_simwt w 3
at L A

i
=> i ==z et

L
Integrating both sides.

I.h = J' % s ntalt

V| cosw )

== -

L "



I, coswt
j=——t—

Wi

{ Ve sy
—— s y

wi

" .?4-.
| =——=sin| Wr——

Ssin wt—=|

K )
=, = At S |
= v sln] wi 2-’

v '

Maximum vilue of J 15

{ro X, =2gL = wi)

" o | ~ ! ! H
! =—= when sin| ne—2< |is unity.
\ v 2

el

Hence the equation of current becomes 1=/ sinfur—7/2)
So we find that 1f applied voltnge 15 rep[resented by v =1 sinwe. then current
flowing m a purely mductive circuit is grven by

1= {,sinfwr—x/2)

Here current lags voltgee by an angle ©7/2 Racion, A

Power [actor

Power Consumed = VI ¢os ¢

=gas 90~

INC

S

V

Hence, the power consumed by a purely Inductive eircuit is zero,
A.C. Through Pure Capacitance : —

§ - 7wt - u/T)

1
|

~)
\/

v = Viusin wt

v =Vesm wi

—ull—

—_—

Let a capacitance of *C" farad 15 connected across the A, C. supply of applied

volige

V= st

(1

Let ‘g’ = change on plates svhen p.d. between two plates of capacitor s v

=y

g =V sin wi



1 {
i=;‘-‘—(f'. s wt)
/] or

t=cl, sinwt

=wel', cox we

I
=—— =N
V we
I . .
= = = gost |- % = o1 s known as capactlive reactance
RS ' We 23k

i ohm, |
={_cosnt
={_sintnwt+==x'2)
Here current [eads the supply voltage by an angle /2 radian.
Power factor =cosd
=gos 90" =0
Power Consumed = VIcos
=VIx0 =0
The power consumed by a pure copacitive cireuit 1s zero,

A.C. Through R-L Series Circuit : —

L
» (TOOT)___
W
¢ Vr =2 Vi —
)
S’
w=K_dn wt

The resistance of R-ohm and mdoctance of L-henry are connected in series
aeross the ALC, supply of applied voltage

c=£_gsinwt (1)

=¥V

=\[; w7 L ton I:TI

=Jm‘": = (X)) £¢=tun I\Ti
= IR +X, Zg=nn I\??

I =IZZ¢ =1 [%'

Vi=IR



Where Z= R =X,
=R+ jx, 18 known os impedance of R-L series Crrcuit.
_ ¥V E sinwy
229 ZZ¢
I=1_smiwt-g)

Here current lags the supply voltage by an angle .
Power Factor :— It 15 the cosine of the angle between the voltage and current,
OR
It 1s the ratio of active power (o apparent power,
OR
It s the ratio of resistance to inpedence
Puwﬁr s
=i
=1 sinweld_sinfwe - &)
=V E, snowe sl we—g)

=I?l'. I 2smywesiniwe = ¢h)

= -Elrll.l cosg —cos 21— @)

Obviously the power consists of two parts.

; 1=
(1)  aconstant part —F I _cosé which contributes 1o real power.

(i) @ pulsating component -1/ cost2ivr—¢) which has a frequency twice

that of the voltage and current. It does not contribute to actual power since its
average value over a complete evele is zero.
Henee average power consumed

Where V' & | represents the r.m.s value:
A.C. Through R-C Series Circuit : —
The resistance of *R™-ohm and capacitance of “C'" farad 1s connected ucross the
AC, supply of npplicd voltage



o= F_sinwe

R ¢
‘-‘"v.v Jl l'—_
- Ve # Vi -
S~
pary
=¥, (=)
= IR+(~JIX )
=N(R—JX_)
V=IZ

Where Z=R-j¥, = J R+ X" is known as impedance of R-C series Circuit
Z=R~jX,
= JR X
L == un ‘f = I 1
R
%
V=Ms—
— “
rL-0
_E.anwt
ZL—h

= |

E
=—=sinlur + )
7.

= I =1, sm(wi+ &)

Here current leads the supply voltage by an angle ¢

A.C. Through R-L-C Series Circuit : —

Let a resistance of *R-ohm inductance of *L° henry and a capacitance of “C”
furad are connected across the A.C. supply 1n series of applied voltage

L
R C
C e— Ve ——

(=)
=/

e K_=nwr

e=FE ginu? (1)



(‘=V;~5:_.+V:

=¥, + JF, = jV.

= Vet IV, =T,
=1, + H{IN, - IX )
={IR= (X, ~X_}]

=IJR X, XY 2itg=tan '|%

=224y
Where  Z=1JR'+(X, - X, ¥ is known as the impedance of R-L-C' Series

Circuit,
If X > %, ,then the angle is +ve,
X, < X . then the nngle 15 -ve.

Impedance 5§ defined as the phasor sum of resistance and net reactance
v=J2L1q

" =P E_sinowr : .

7759 I22= 4 =/:-—i¢\— =1 _saniwi= )

(1) WX, =X, then P.fwill be lagging.

(2) Ify, <x, then, P.fwill Be leading.

(31 It A, =& . then. the cireuit will be resistive one. The p.f. hecomes unity

==

and the resonance occurs.

REASONANCE
_tis defined as the resonance in electrical cireuit having passive or active
clements represents a particular state when the current and the voltage in the
cireuit s maximum and mmimum with respeet to the magnitude of excitation af
i particular frequency and the mpedances being either minimum or maxmmum
at unity power factor
Resonance are classified nto two types.
(1) Series Resonance
(2)  Parallel Resonance
(1) Series Resonance :- Let a resistance of “R* ohm. inductance of “L°
henry and cupacitance of *C” furad are connected in series across A.C supply




—wn— ] OUOOO_,

| - }
ey
e=K_un wl
e=FE_sinut
The impedance of the cireolt
Z=R+ )X, -X]
Z=of R (X, XY
The condition of series resonance:
The resonance will occur when the reaetive part of the line current 1s zero
The p.f. becomes unity.
The net reactance will be zero.

The current becomes maximum,
Al resonance net reactance 1s Zero

X, ~X,.=0
=X, =X,
S
W
W LC=
=N =L_
1A
= = '_
JILOC
== Jf = !
2 c
{
—= [, == —
- 2RNLC
_ | |
Resonant frequency (4 j=— —
\-lv ) ' 2T Jf—(
Impedance al Resonance
Zy=R
Current at Resonuance
g =&
Fie
Power fuctor at resonance
. R R ;
i =————=] 72 =R
pfi=s—3% l |



Resonance Curve :-

Unity pfi(upf) L R
Lagging
]
: f
fo fo

At low frequency the X, 1s greater and the circuit behaves leading and
at high frequency the X, becomes high and the circuit behaves
lagoing circuit,
If the resistance will be low the curve will be stfT (peak).
o f the resistance will go oh increasing the current voes on decreasing and

the curve become flat. | |
Band Width :—

At point A the power loss is IR,
The frequency is f; which is at resonance

At pomt *B” the power loss is /2
b

The power loss 1s 30, of the power loss at point
A

A I /
B /!
|
' T : .
Hence the frequencies

carresponding 1o point *B” is known as half power frequencies f; & 1.
i = Lower half power frequency

’ s

IA = ,.—L
dd.
#: = Upper half power frequency
R
, = _f" E = —a
. A

Buand width (B.W.) 1& defined as the difference between upper hall power
frequency ad lowaer hall power frequency.

R
BW.= -1 =
h—fi==




Selectivity - —
Stlectivity is defined as the ratio of Band width 1o resonant frequency

Seleetivity = !11".:- = 'i?ﬂ— Suleetivity =-——--. E:L
Quality Factor (Q-factor) .—

It 1s defined as the ratio of 21 » Maxmimum energy stored to energy dissipated
per cyele
2% é Li|

Q-factor = Rt

a2
- URT
_#2r
~I’RT
_2r
PRT
dal.
=

= 2 S
Quﬂhly fwﬁr:=:%:£ ['--=T= ’u]

Quulity tactor is defined as the reciprocal of poswer factor.

. !
Q factr = = -
coNg

It 15 the reciprocal of selectivity.
O-factor Or Magmlication Factor

~ Vaolwge ocross Inductor,
Vuoltage across resisior

1K
-7
R
2k Wil
A R
Wi
Qf factor = —T

O-factor factor _ Voltage across Capacotar.
Vaoltge across tesistor
LX,

IR




Il
x|"'v

Il

Y € 24, CR

()-factor =

W,CR

WL |

',: {1

NOWOR

.‘..3?

& e

. |
o~z
|

C

!L
}g:'—. S —
Q R (¢

Graphical Method :—

(1) Resistance 18 independent of frequency It peépresents a siraight line

{2) Inductive Reactanee Xy = 2=fl

It is directly proportional to lrequoncy. As the frequency increases . X,
INCreases

{(3) Capacitive Reactanee Xi = = :

2FC

b X3

{ —

It 5 mversely proportional to frequency. As the frequency increases. Xe

decreases.
When frequency mereases, X, inereases and X decrvases from the

higher value,




oo

g
ox:

Ava certamn frequency. Xy = Xy
That particular frequency is known as Resonant frequency:.
Variation of circuit parameter in series resonance:
(2) Parallel Resonance :- Resonance will occur when the reactive part of the
line current 1s zero.

te N
—;—4 [l
L]
s | Lo <
’ —
=
Al resonance,
l( — ll";'ll'l ¢I0 =
f. =1 sing
l r
= —= ——mtaﬁ
Yoo JR+x)
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7=t
c
=R+ X, =L'.
¢

=8 +(2.7!.7,L)7 =—é}

&

SR 4= 70 =—

/, = Resonant frequency i paralief ciremt.
Current at Resonnnee = £, cosg
¥ R
VR =X, (R4 X/
R
S v
I

R
VR )

N

L'C LRC

- Dynumi¢c  Iupedonce
L RC — Dynamue Impedance of the circmt.
or, dynamic impedances s defined as the impedance at resonance frequency in
paralie! circuit.

Parallel Circuit :—

‘_g.w—_.{l

< |

I: = « ¢
~)
=g

The parallel resonance condition:



When the reactive part of the line current is zeto.,
The net reactance 15 zero.
The hine current will be mnimum.
The power factor will be unity
Impedance Z =R + /X,
Z=R, - JX,
. § e 3 |
Admittance 1 =—7:=. =X,
_ (R =+ X )
(R = A KR~ 1X,)
< E
R'.: +4X; :
R, .
R VX f R
o
N k& Al Il-r¢
(R + X )
TURZ, = X, )R, + X, )
_ R+ 0,
R+ XS
R, Ry

}‘v -~ p—_ . +.’ v ! -
S ORTENS TR AT

Total Admittance Admittance (_;’. ,z_?'_ ,._‘_

K

Admitzance V. =

N|-

=Y <F+¥

R, Xz, 2 %o
= 4 .--’ » .o+ . ‘-.', » .« !
RI+X7F REXD RN, REAXS

=Y

R k2 | P TR 7
RN RO =X Ri'sX, & +X.°

At Resonance.
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% p=ce?
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’ £-R.: L-CR-
=

| [L-CR
LL‘ ,I.-‘.CR:.:'
eSS

AT LC| L= CR;

1 —
. 1-‘{( L-CR® |
=== ‘—]
2=\ LC-LC7R.
/s called Resonant fregquency.

fr=0

bRt
n = -
Then 7=— =

,-LJ'_T__E_L
"“ag¥ee

If R and R, =0, then
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Comparison of Series and Parallel Resonant Cireuit —

Item Series ckt (R-L-C)

Parallel ckt (R— L and
C)




% lmpedance at Resonance Minimum

Maximum

s Current yt Resonance '

Maximum= §

I
Minimun1= (L7 CR)

“ Effeetive Impedance R

< P.f at Resonance Liny

|

% Resonant Freguency

Iz LC
% I Magnifies voltage
< Magmificanon factor % %’1

Parallel circuit :—

L

1)
1 t’lb- '-lC

y Y
A

v.f

Zi=Ri= X, =R} +X. 28
z:aﬁ-qx(aJR;ﬂnn’é-g

P .
L";za Z

E==4 L~

3 &
\Vhﬁﬁ Z—=‘ ),

5

Here Y — Admittance of the circunt

Admittance is defined a8 the reciprocal of impedence.




=V =
R = X,

" ¥
IR
C LL-9 Z,

Lh=VYLp=LLd,

Iy

I=I7 =17 4211, costy <)

ATSme,

-
-
]
:; Icostye I, cosg, g -
3 ' v
- '
s '
= :
s '
'

The resultant current “1™ 15 the vector sum of the branch currents 1) & s
can be found by usmg parpllelogrm low of vectors or resolving [2 into their X



—und Y- components ( or active and reacthive components respectively) and then
by combmmg these components,

Sum of active components of 1 and 1= | cos ¢+ L cos -
Sum ol the reactive components of [, and L= 1, sin &y« [ sin ¢y

EXP-01:
A 60Hz voltage of 230 V aeffective value ts impressed on an inductance of
0.265 1
1) Write the time equation for the voltage and the resulting current. Let the
zero axis of the voltage wave beat t =10,
(1) Show the voltage and current on a phasor diagram.
() Fid the maximum energy stored in the inductance.

Solution :-
1w =21 = 2 2300
f=60Hz, W=2a=2ax6l= 377rad| s
X, =wl =377 x0.265 = 1000
(1) The time eyuation for voltage is /(1) = 2502 sin 3772,
1. =V, /x,=23042/100.= 2.3\
G=90"(lug).
“ Carrente quanon 1s:
it)y= 2,3\(3 An(377—-x/2)
or =232 w8377
() I

(i) or B, = !

Ll e == 0,265 % (2352) =144

bd | =—

Example -02 :

The potential difference measured acrass o cotl 18435 v, when 1t carries a
direct current of 9 A. The same coil when carries an alternating current of YA at
25 Hz. the potentinl difference is 24 v. Finel the power and the power factor
when it 1s supplied by 50 v, 50 Hz supply. '

Solution :
Let R be the d.¢. resistance and L be inductance of the ¢oil.
R=1""1=459=10.58




With a.c. current of 25Hz, 2= V/1.

3
2 2600
u

XN, =VZ° R =\266° < 0.5
= 26202
X, =2 25x L
x,=0016702
At S0Hz
Xo=2.62%2=524)
Z=y0.5 <524
=5 0nt}
| =50/526=9.5A
P=17R=9.5 % 0,5= 45 watt,
Example - 03 :
A 50-uf eapacitor is connected across a 23(0)-v, 50— Hz supply. Caleulate
(a)  The reactance offered by the capacitor,
(by  The maximum current and
(¢)  Ther.m.s value of the current drawn by the capacitor.
Solution :

(a) L

! | |
We  2pfe 2x=350=50%]10°
(¢)  Since 230 v represents the rm.s value
o dL =2307 5 =230/063,6=3,624

) Fa=1. %2 =362xJ2=5114

Example —04:

In a particular R — L series cireuit a voltage of 10v at 50 Hz produces a
current of 700 mA . What are the values of R and L in the circuit ?
Solution :

(1) Z =y <27=50L)

=R+ 956961
V=1
10=T00%10" iR =IB696L )
IR L 986967 ) = 100 T00 107 = 10077
RE=OR6OL = 10000/ 49 (h

(i1)  Inthe second case 2 = JR° <275 « T5L)°

0= 50010 YRS =22306617) =20
JB 22066171 =20

63602




CHAPTER-07
TRANSIENTS

Whenever 2 network containing energy storsge elemants such as inductor or capscitor ls
switched from one condition to another either by change in applied source or change in
network slerments the response current and valtaga change from one state to the other
state The time taken ta changs from an Intial steady stateto the final st=ady stats is known
asthe transtent period. This respense ls known as transient respanse of transients The
response of the netwark sfter it sttains & finsl steady value s independzn of time and is
called the stesdy-state respanse The complete responss of the natwork i determined with
the help of a differential equation,

STEADY STATE AND TRANSIENT RESPONSE

In 3 network containing energy starsge elémgnt:., with change in excitation, the currents
and voltages in the circuit change from one state to other state. The behaviour of the
voltage or current when it is changad fram one stateto anather is called the transient state.
The time taken for the circuit to changes from one steady state to another steady state is
calfed the trangient time. The application of KVL and KCL to circuits containing energy
storage elements resuits in differential, rather than algebiralc equations. when we considér a
circuit containing storage elements which are independent of the sources, the response
depends upon the nature of the circuit and Is called natural response. Storage elements
deliver their energy to the resistances, Hence, the response changes, gets saturated after
snime time;and is referred to as the transient response. When we consider 2 spurce acting
on a orcuil; the response depands an the nature of the source ar seurces, This response is
called forced respanse. In other wards;the complete response of 8 circuit consists of two
parts; the farced response and the transient response. When we consider a differential
equation, the compiete solution consists of two parts; the complementary function and the
particular solution. The complementary function dies out after short imterval, and 1s referred
to as the transient response or source free response; The particular salution is the steady
state responss, or the forced résponse. The first step in finding the complete solution of 3
ciccuit Iz to form a differantial eguation for the circuit. By obtaining the differantial
equation, sevetal methods can be Used to find out the complete solution.

DC RESPONSE OF AN R-L CIRCUIT

Cansidér a circuit consisting of @ resistance and Inductance ac shown in figure. The inductor
in the citcuit is Initially uncharged and Is in series with the resistor When the switch S s
closed ,we can find the complate solution for the turrent Application of kirchoff's voltage
law to thea circult results in the following differential eguation.




V=Ri+ L§ 11
.. &,
— + == ) ———— i 1 s & ) § | S | § o) § § S 4 6 u
i d & l L

In the above equation, the current | i the solution to be found and 'V 1s the spplied constant
voltage The voltage V id 2pplied to the ciroult anly when the switch S Is dlosed. The ahdve sguation
{4 a linear differential equation of first order.comparing it with 3 nan-homogenious differerdial
equation

e
' “7 «Px=K Lilais bmatlaal L WIS 72
whase solution i
X=9"F [ KeT T dtec e L i RS i

Wherte ¢ |5 an arbiltrary constant. In asimilar Way . we can writes the carrent eduatioh as

izce Tf 4ot }-:-e@’ dt

! -{= v
Hunee | =cCe {:)’ +; aprytetti0aseereeesstomementtiatons oL S S08

To determine the value of ¢ in equation ¢, we use the Initial conditions In the arcait shown in
Flg 1, the switch s s clpsed att=0ate=1l- e, just before doning the switeh s, the current in the
inductor s zeeo. Sinde the inductor doss pot allow sudden changes in currents, at t=o+ just atter
the switeh Is clased the currént remsalns zero. '
Thusat t=0,| =0
Subsstititing the above condition in equativn o, we have
b
U=+ 3

Substituting the value of ¢ i equation ¢, we get

. 0 =87
] $ —

j== <— 2¢
=2 =

v 4 ity
_—— - f
=% (1-€7)
i={, (1 c"?][whem L= %}

k=1, {1- 67 ) { where e= Timeconstont =2 ) e YR ..



0 1 2 3 4 5 & 1C
Figure 1.2
Eqquation d consists of two parts, the steady state part 2, =V/R) and the transient pirt 1, 72
Whetl switch 815 closed | the response reaches a steady stite value after o time interval as
shown'in figure 1.2

Heve the transition period is defined as the thine taden For the current to reach its final
or stedy state valud from it initial valuedn the transient part of the solution, the
quantity L/R i< lmportant indescribing the curve since L/R i the time perfod requiced
for the current to réuch its Initial value of zero to the findl vilue 1. =V/R The time

-1z
constant of a function o, €T Is the Hme ot which the exponent of ¢ is unity, wherd ¢

is the hase of the natural logarithms.The term L/R is called the time constant and is
denoted by 7.

5 t’L g

G, T= = sell

! A

Hence, ﬂw ransient part of the solution s
p =By =

=== g% =—27%

R 3

At abe Time condtant . this tranaient term reachies 36,8 percent of its initil value,

= -;-' ‘v. :—E -1 :-‘ :—.
lfr)= -3¢ S 0368 -
Similarly,
y ~e = i
[2r)=—="% =035

(3t} =S =-0.0498 %
I(57) ==~ =-00067 5

After 5 TC the sranslent part reaches mpve than 99 percent of its tnal value.



I figure A we can fed out the valtges and powers across each elsmpnt by using the current

Voltage goross the resistor is

:g—,;Rt:R*-} [} e=.B)

Hunde, vz =V (1- a:? )

Simifarly, the voltage sorosy the Inductiance is

& X2 #3
n=¢: =NVel

P 1 2 3 45 6 TC

Figurse 1.3

Powuere In the resistor |y
_ =33 e T
Bx=vgi=W{1- ¢T ) (1= 6T 1x:

=2

-.|| - -
=7(l- Ze‘cﬁ |+ %
Power'in the induttor is

=X =
Fr=pi=V c"'rx-:- (o= r'?)

-;:( “%&-’ a@]

The responses-are ghown i figure 1.4



R ,
Pg
P
0 1 2 3 4 § 8 TC
Figare 1.4
Praoblem - 101
300
e
8OV T f 5
-

Figure L5

A derles ReLocircalt with R = 300 and L=15 H hasa constant valtage V=50V applied at t=0 as
shown'in Fig. 1.5 . determine the curvent §, the voltage across resistor and atross inductor.

Saluten :
By applving Kirchoff's voltage Law, weget

155 < 30i=60

=" .:4.23:4

The general solution for a linear ditfferential equation s
i=ce T 0P [ Ko it

where P=2 K=2

putting the values

R e L i 1}

=D j=gp "t e 2



Ari=0, the switdh s i clasel

Since the inductor never allows sudden change in currents, At t=07 the current in the cireuit 1a
zero, Therefare at =0, | =0 '

=20=c+2
=D C=-32

Substinuting the walue of ¢ in the current eguation, we have
=21 e ) A

valtage ncross resistor [Va ) =iR =201 o %) x A0=60{1- e ) v

% "
valtage across inductor (V) =L-:—; =13 X i.‘—:[l- € %) = 30 x ™ y=609"

ot F -C CHRCUT

Considet a crruiz cansliting of 3 resistante and capatizance 2z shown in ligure The capacitor inthe
cireuit & nitially uncharged and is I series with the resiEtor, When the switch S o cioged at =0, wa
gan find the complete splution for the current Application of kirchoff s voltaze law to the aircur
results in the following differential equation

X R
= s

i{d)

<

Figure 1.6
VENEEIERE cimistsmsmsiiasssimsimssimandliT
By differantiating the abuve equatlan, we get
L — .18
Or
Z.ii=0 . <l = 14

&  &C



Equativn cis linear differential equation with anly the complementary function. The particalar
salutlnn for the above squation 15 22r0 The solution for this type of differerial rqu.ntlon I

= RS sl 6110

To determine the value of ¢ 1 equation ¢, we use the initial conditions o the cireuir shown in
Fig. the switth s s closer) at 1=0), Since the capaditor does not allow sudiden changes It voltage, it
will act as a2 short cireids a1 t=o+ just after the switeh s closed,

So the correntin the crcuicart =0+ 15 ;
Thus att=10, the carrent| =+

Substitting the ubove condition in equation ¢, we have
.:' =4
L

Subsstiteting the value of ¢ inequation ¢, we get

A (-
= s l-ncl P TR Y R oY 15 1,

¥ . = 3

Figure 1.7

Whiet switch S1s closed | the response decays us show in figurre.
The termt RC s called the time constant and 4 denoted by 7
So, T=RE sec
After 5 TU the curve reaches 949 percent of its:final value.
I Bgure A we can find oot the voltage acruss vach élement by using the Current equation

Valtage across the resistar is



-t
Henve, o =V&ie

Sinilarly, valtage across the capacitor s

Art=0yoltage across capacitor (s zeen
So,e=V

And

Ve = Vit = ofD)

The responses are shown in Figure 1.8,

012345'31'3

Flgure 1Y

Power o the resistor 16

H=tpi=V 'l-rs'; #in
=$'=‘=“;
5

Power'in the capdditor I«

- : =k ¥ =
7:="f’=V[l—'-¢-§}g D



...1 - -
=T(cﬂ-o'f;ﬁ
The respensges are shawn in figure 1.9,

P .

V2
R

Py
Pr

Flgure 1.9
Prdblem @ 1.2

A series R-C creult with R = 100 anid € =01 F has 4 constant voltage V =20 V upplied at t=0 2
shovin in Fig. determine the current |, the voltage atross resistor and across capacitor

100
XE AA

20V ' —=0.1F

Figure 1.10

solulian

By applyving Kirchoft's voltage Low, we get
1]+ [1dt=20

Mfferentiating wort. 1 wo get

inilog
a2t ‘D5

The solution for above eguation 1s



i=ce
At t=i), the switch £ Is ¢loswd

Since the capacitor never allows sudden chonge in voitages. At1=07 the current in the oireuit is
1= V/R=20/10=2 A
Thereloreatt=0,1=2 A

=0 the curfent equastion s =22

valiage across resistor (Vo) =iR =2 e " x 10=20e"%y

valtage dcross capicitar (Vo = VL = oFh=20(1-¢Y V

RES 1RCUIT

Conhsidet 3 circuit cansliting of a resistance, inductance and capatitance as shown in figure.The
capacitor and inductor in the cireult is fnitially uncharged and are in series With the resistor, When
the switeh S Is dossd at t=0, we canfind the complete alution for the current Application of
kirchioff's valtage law to the Greun results In the tellowing differential equation

-—OA/(: ‘\/{‘/\.

0 =y,

Figare 1,11

V=RieLZ o2 1d e AND

By clifferentiating the abave equatian, we get

& . A
=R—Ld*jdz+ -|= PYTTAC, PSP L VI X 220 U (0t oo F R LIy )
0=RT +Layded = 2 1.13

Or

LR
o= "’T:‘ _ﬂ AL 06“!0——!!‘-—-‘&-I‘l—----<—~--04l~—1514

: -
@ S



The above syuation ¢ is & secont ardes Hinear differentinl squation with enty the camplementary
funictinn. The particular solution for the above equation Is 22ro. The characteristics equation for thiy

type of differential squation is

DP4ipe— =0

Theronts of egaation 115 are

= ] =3

» = — -‘v — —_ =
e 3 N (—I) I3

l ~ - ‘

- 4 . X
o DA’ = n o= 08w ——
By assuming Ay =-_ 2 d : \‘(21)

Ic
DymB = K: and D; =Ny = K.

Hers 5, may ba positive.negative or 2era .

§
-—

Casel: K s Poaliicy (%J. > —1;

=L 1S

Then, the roots are Real atd Unegual and give an over damped Response as shown in figure

1.12,

The solution for the above equation (- 1= G @8Rt O, gfichah

'}

Figure 112

3. e
Lase [1: Ky 13 Nagative (3.“.) < =

Then, the roats are Complex Conjogate, and give an under-damped Response 3 shown in

tlg_urv 113,




Figure 1,13
The solution tor the above equation is: 1= #%4{C, corl;t +C; anK;t)

A
T

: “ 4
Citse 111 - 83 15 Zery 3‘2} =

Then , the roots are Equal and give an Critically-domped Response as shown in figure 114

it

Figure 1,14
The solution for the above equation 151 [ = «&{C; + C2)
Probiem ; 1.3

Aseries R-L-Curcuit with R =20[1 , L =005 and C=20 pF has o cdnstant voltage V=100V
applied at =0 as shown (n Fig determine the translent current |

ST R
KA

02 | Jo05H

100V

o ctow
Ie T

Figure 1.15

Solution
By applying Kirehott's vodtage Law, we get

= & 1
106=301 0,054 ——u Jiar

Ditferentiating wirt. 1 weget

243¢ 15020 2% S
005z 745 020&+a‘wi-ﬁ



=2 digzdr? +200 =+ 16%=0

=> (D +2000 - 1071 =D

The robts ol équation are

B1By=- ".33 t\{(_%’-_lﬂ‘
=-200%,TF0 - — 107

O; =-2004979.8

3. =-200:1979.8

Therefore the current

| =" %0 coslly t+ Cyeosi,r]

i =m0, co99T79 B £ Cain 9798 ] A

Art=0, the switch sis closed,

Since the inductor never allow's sudden chunge In currents A =07 the current in the orewidt s
zero, Therefore at £=57, 1 =0

=> ;=0={1)[Q To2 °+e; lnD]
= (= Dand | =4"%[C. sin 9798 ] A

Dhfferentiating wart. 1 wo get
%--Q[o"“’?&ﬂm 29788 1+ ¢TI (<200 el 97257 ]

Art=0, the volmage across the mductoy s 100V

& 8 _
= L;-wu urs 2000
At 1=, -ﬁ-ﬁ = 2000=C.979.8 coel

== C;=—'—"—£=?_M

The current equation is



=0T 2 04n ST A

The Laplace tanstorm s a powerful Analyticol Technige that js widely used 1o study the
hehavior of Linear Lumped parameter arcuits. Laplace Transform converts a fime domain
function f{t} to & frequency domain function Flg) and alye loverse Laplace trunstarmation
converts the [requency domain function F(s) back to a tme dormain function (1),

NSRS ST 0O NOIAE sninmssiiminrrsisiimimmipssmimnd I
=3 : = =L -y s 2
L% [Fs)) =1 :::rr"! B s L e iisatlisaermiiipemsesiiv LT 2

DL RESPONSE OF AN R:L CIRCUIT (1T Method)

Let us determine the solutfon | of the first otder differential equation given by equation A which
is for the DC response of d R-L Circult wsder the zero initial condition Le. current (4 zero, =0 at
=07 and henee (=0 at t=0% in the ciroult in figure A by the property of Inductance not allowing

the curtent to change as switchis closed ut 1=4),

Xe__%

Flgute 711

Ve R ESS ot T 2 LT 1.1
ée

Toking the Luploce Trausform of bothe sides we get,

=R l(s, + l-l Sl(:b] "lu' l SRR e L L e L L LTu

"’% =RIfs) =L |slis) | (1{0)=0 :zerp initial aurent |

| 1) Btr T ————————————— L g B |



Taking the Laplace Inverse Trassform of both sides we get,

=> L)) = () = i

)= L'*{ ?"’_t_ 57 l)Md(ng the numesator and dentninator by L)
putting & = 8/L we get

| = v/ - <

)= s =LY G-me)a

i) = "'*{ [-- W‘si) | ughin putting back the value of &)

e =4z (3= o ) =2 L 1 e )=, 11- ¢ T)  [where o=

t=l.(1- 27 ) [whete t-‘l'tmccommmea: R N LT 1.4

It can be observed that solution tor i[t] as oblained by Laplace Transtorm techaigue s same as
thut obmined by standard differentin! method

DC_RESPONSE OF AN R-C CIRCUITIL.T.Method)
Stnilarly |

Let us determine the salution i of the first arder differential equation given by equation A which
is dor the OC respanss of 4 B0 Clrewlt under the zero Initial condition Le, valtage aeross
capacitor 15 wuro, ¥, =0 att=8"and hened 1 =0 af =07 i the circult in figure A by the propetty

of tapacitance not allowing the voltage across It 1o change as switeh is closed at t=0),

‘ —OXG A J\g/‘f

Vv
ey == C
i)
Figute LT 1.2
=Re=ftdt - (T15
Taking the Luplace Transform of both sides we get.
P R i [ (L)} p— i T 1.6
->§ =R 1{s] o§| %’2| {1(0) =0 - zero initial charge }

=> ¢ = 1[a)(R =] = 115) ==



. v 3 24 >
=alls] = ;{fl: ) a1

Taking the Luplice Invérse Transform of bath sides we get,

=5 () = e = )

it]= &"‘(T%i [ Dividing the numerator ond denopminator by RC |
‘ -

A i
oy 1
puttmg = m:\wge

)= Lt =2 e

2

" -~
(r) -;-'E 2301 putting back the value of %)
(1) =t 0 (where [ m 3} coiicicciiiiion LT 18

ifr)=1. e:'.-!) (where ©=Time constant= R{)

1t can he observed that solution for i(1) 2s ebtatned by Laplace Transtorm rechnigue In g s
sime as that obtained by standard differential method ind

De of R-L-CCIRCUIT(L.T.

Figore LT'1.3
Stmifarly |

Lot us determine tie solution | of the first order differential squation given by eguation A which
is for the D responss af 4 R-L-C Circuit under the zero mitind condition Le: the switchys {s closed
att=0at t=0-5e, just bejore closing the switeh s | the current in the inductor is zero, Since the
Inductor does not bl sidden changes in currents, ati=o+ fust after the switch s closed,the
current reenains zero. also the voltage avrass capacitur s 2oro Le 1L =0 3t =07 and hence 1, <0
st t=0% inthe chreuit drr figure by the propeny of capacitance not allowing the valtage across it
Vito stiddenly change as switlh 5 closed ut 1=0,

V=Ri+L §+-}i [ T & "

Taking the Laplace Transform of both sldes we get,



‘;'gau,nﬁz,[nl:;].uo]h%[ 2';!’;4 ()] e . ), (11,

'>§ =R I{s) +L[-1&J]+%l 5"-;3| (100} = @rzero lnitisd current & 1|0)=0: zero Initial
charge |

->§' =I{s)|R +1;+-c!;| = 1s) é.‘.'{%a'!.*.’:l

"

S Wi er R
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Taking the Laplace Inverse Transform of bath sides we get,

=> ZAI(s)) = U = L3

Gy

e
iftj= L 4 (T‘—.Egi { Dividing the numerator and denominator by LC |
T e

v
ift)= &3 {,_,g,ﬂl
_

putting = =£~ et = \}-::, we get

0= )

The denominutor polynomial becomes = [#2 42 %z 4 w*]

where, =, 2 --'zs—”éﬁ S L e

where, :‘.:% : m:v% and 8= \ﬁ!-u‘

-

By partial Fraction expansion , of I(s),

A s
= e —
i) -1, 3=,

A=03—5) 10155

T
S <
T
B=106—-8) {5 e=s3;
- B
T l— T e——
SR gy
-t _ 4
) = (5~%) .l(rto (r-b)’

Taking the Inverse Laplace Transtorin



I(t)=A, &5+ A%

Whiere Ay and A; are constants to b determined and 5y and £ aren the roots of the
equstion,

Now depending upon the values of 23 and 22, we havo three caces of the regponse,
CASE | - When the rontsare Real and Unequal, 1t gives an over-damped responss.
T

L -
- > ;i Lase,
= Ji ar v dicthis case, the solution is given by

() === (A ePe A0 ) i 122
ar Ht) =2y #%% AaF fort = (0

CASE 11 : When the roots are Real and Equal, it gives an Critically-damped response.
T

= .

Ji or = luthiy case, the solution ks glven by

&
=

ar
(t1=¢"% [AprAst 1 fort = D LT 113

CASE 11 When the voots are Compley Comjugate, it gives an under-damped response.

?Z < v% or < w In this case, the solution |s givien by

i)=& = + 458 fore> 0

Lot ¥o=a® =VEIVEF=d = @ where = V=T and'wy =GF -3

Hence | (1) =#™RK, o5 LA g=lowr)

e e a OSe

) =" [{A, + A c0swat +1 (4 —Az) 3ot ]

()= (B, coswat +Basliwatl i T 104

L Lo TR
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v One-Port
Network

. =

One port networlk is a two terminal electrical netwark in which, current
enters through une terminal am)d leaves through another terminal. Resistors,
inuctors and capocitors gre the examples of une port network hecause cach
one has two erminals Oog port network representationas shown i the

following figure,

b A pairof terminaks at which a sighul [voltige or current) nsay emster or leave is

¢}
d)
e)

called o port

A netwurk having unly ene such pule of terminals is called a one-port network.
No connections may be made to any other nodes internal to the network
By RCL, we therefore haveii=

-

-—

F N
o> >
Twao-Port
Network v
<l | >

*  two port network le o pait of two termingl elesticsl nety ko s wihieh, surrednd
sritsrg through ohe termingl avd e aves throudh anather leasminal of each por Two
(O NEtWork refmasemasan |3 showr 0 the odowina figure, Ty (o oo Jjere

*  Two-port networks are used o describe the relationship between a pair of

termiinals

*  The anulvsis methods we will discuss require the following conditions be

met
1. Linearity

2. No independent sources inside the notwork

3. No stored energy inside the network {zero initial conditions)

4 h=hanid ;=1
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Two Port Network Parameters

There are various parameters needed to analyze a two port
network. For examples, 2 paranciors Y parameters, |y
pammeters, g parameters, ABCD parameters etc.,

Let us discuss these network parameters one by one to gain a
better understanding of their application and uses.

Impedance Parameters

*  Suppose the currents and voltiages can be measured.

o Alternatively, If the circuit i the box s kinown, V' and Vs can be calculated
hased on dreuit analvsls

o Relationship can ba written in terms of the impedance parameters.

*  Wean also caleulate the impedance parimeters after making two sets of
measuraments.

Vi=znliezi2dy
Ve=zahi+2mb

IUthe right port IS an open cireuit (J;=0), then we can easily solve tor twao of
the impedance parameters: Similarly by open direuiting 1elt hand port (i ) we can
saive for the other two parameters.

B

I

le} 31:'

TR I Ly, = forwerdiransforimpadence =
Zu-.-m.:mnm_mmce:}ll]::o ¢ (e AT

1

. i TN, -
L, = reversenmsfoinpedence =}L|Ix =0 Z, =ompunm_z;emm.ff=-Ix|1l =0

-
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< [(5)

V.(8)

Vi=zyudi+24als
Vi=zaly+zul:

o Oncewe know whit the impedince parameters dre, we can model
the behaviorof the two-port with an equivalent circult.
o Notice the simibarity to Th evenin and Norton eguivatents
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& -
: =5 <L .
) Two-Port "
| Network |
* = |- " —»
-
IeynVitynele
L=yn Vitys: Vs

Y., = input admittatcs = {’Lh@ =0
£
Y..= forward transter admittance = {rk[? =0

Y. =output admittance = -‘{’;LIV. =0

¥, = reverse transfor admittance = -‘{LIV =0

Hbiid Parameters

Vi=hy f+hy:= Vs
I=ha i+l Vs

h,, = nput impedance = %ib =
hdl
h,, = forward current ratio = —}[V, =0
= : = f
fy: = reyverse voltage rppo = ;}ll,= 0

b, = ontput pdmittance = ‘—’;-u;:o
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Example;

Given the (ollowlng circult, Determine the Z parameters,

b osn 10a e
v e
+ -
Vi 3 200 0oV

Z,;= B+ 20130 =200)

20730 = 120

ty

7 =%sl. -0

v 208820 gyr. Thereforez _ S, _gn - t
b 20430 e L *

The? parameter e_qunrtms can he expressed in matrix form as tollows.

¥ = 1, I !11
Vll i.z:x z;:jllL:.]

Example:
Glven the tollowing circuit. Determing the Y parameters

L, 10 n L
’ LS/ ‘
+ +
vi L4 -
P 2
= K -
1O
lt -‘=}'“V-:+}'=2V~:
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Iy [0 L

-—
MY r
+ L +
V = C =S
| ﬂm
— AP —
14}
Tofindy,,
33 [ 21
% :I‘(zox"s)zl‘l_zs-z_!
I 2
1 =$+0.5

|
1 — .1 ' —
slsti »1)’11 'V'il Vp=0

To tind Yis and y

we revers? things and short V‘

I
Y= “," W:-ﬂ
Vl=—212
\,£=MS
A v
I
e e
short |+ +
v, =1 L]
— x l v:
l'"
ey
p‘ . U V'—D
‘f =¥ y il- o 0.55
| 8 V
J =05
. 5
o -
y =Ly=o V= By —p5!
= Wy ‘lev2)
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Eroblem 1
Find the Zand Y parameter for the netwoiks shown in figure.
1 2
Zs Zy
a Z:

ne

Solution
a ByKVL (Z,+Z,),+ Z_1,=VW,
and Z L+ (Z, +Z )=V,
Thus. the Z-parameters are:
sn=ZyHZ) 3=z =2, Zpn={Ly,+1Z)
1 _ 2
Z, Zy

h) B (&

= |
L]
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b By K.

L L
ke =2 cke Ly
e m S

Vo=l . . '
M‘Q.-—i——-!-'-.._.., -ty -
CF g

Thug, the y-parametersaje.
M= ‘é" tay. My=Jy=- %

Snee AY =3y = M b =00 the 2patameters do not exiat
fiar thio network

1 "2 +——eE

Ve Ll

o By KL
Vg=

!L;'_'ixt‘: m.&'.c(J,;.Jh&({;]!, il l':g(.i‘:),l,,(%),'
T, thie 2 poamsted o al e.

I .,.:A-F= :‘.z =3|

SIee. Az =3((Fas — za7s = 0 the ¥ parameton do not wont
for thix etk

o. ByXCL
L =5+ (0 = B =W, + ¥ -1),
L=t + 0 - ==K LK+ 5)

Thua the ppasameteis bie
K=o Bimy= g ==Ky =h+¥
10— -9 2
fy fy
1" . -y
1 = 2
Ye ’
s fV'.:
1e- -
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Eroblem2
a. The following equations give the voltages Vy and V; at the two
ports of & two poit netwotk, Vy = 5h+212, Vo= 21+15,

A load resistance of 3 Q 1s connected acioss poit-2. Calculate the
input impedance.

b The z-paiameteis of a two poit network are 2,y =50, 2,.=20Q. 24,
=2,y =30 Load resistance of 4 Q is connected actoss the ocutput
port Calculate the input impedance

Solution
a. Fiom the given equations,

Vi=5bih+2 (1)

Va=2h+ 1 (1)

At the output, Vs = - iy = - 30
Putting this value in (ii),
b= 2l + b fily == k/2

3

Puttingin (1), Vy = 615 + (;’-‘.] =4},
. i
- Input impedance, 2, = T =40
1

4

b. [8ame asPiob. (8)] Zin= ”—‘ =350
n |




Problem 3
Drestesrrmines the tvpacametes with the follivwing data

owath the output 1ermirmlo shont cocuned Vi =26V, W =1 A Iy =2

A

i, with the input teiminals open clicuited, v, « 10V, v, - 60V 1, ~ 2
-~
Solution
The -paramel=1 Strjliatiofin se,
Vy - hgjh . hc'/V7

fe=tizgds v houVs
A With output st cllouited Ve = 0, glvets V=28V 1, = | A abd

Jas 2N
2B Zomil = wm2souman, =2
Iy [ s fe= 0L given V= 10V, Va = §3 Vand
ba v 2 A
Tl 'g::';":f;".} > Py 03 a0 by T3 004 T

Thus, the Irpmarmetsin e

2552 0.2
lhl-[ 2 o.o‘-tn'.!]

Problum 4
A Find the equivalent yroetwork fon the Tooetw otk shown in the Flg
(@)

t Find the egquivalent T netwotk 1os the rractwork shown in ke Fig

(1),
ZurRE1 Ty =250 Ys =020
1 2 1 2
Ze-sni Yy -o.zoi = vs=050
r 2 1 4[ 2
@) (=)
Solution

o Lot ihe equivalent mrmnetwolk flave Yo ao the sesies admitntance

and Y5 and Yo as the shunt adimintancas at pont | ang poit 2,
tespeclively
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Now, the ~paramelsss aie given as
N~ (2t L) =T Q= =2 =580 2= (Zy+ Z)=750Q
LAT=(TRTS-5x5)=2750"°

Hpnw 2 TS oy

A= 27.5
Vip=n e —3C w3
- A 27.5

- —:’L:::.l—
Yax A= 2750

vam =25 = o

SVEE (N = % o

and Yo = -)-:,-..-5—-.2.

27,8 11

Thus, the impedances of the equivalent mnetwoiks aie!

Iy 550 I
o—>—t AN 9—4-—:
Vi gnn 1&7503 Vs
. . - -
Equivalent m-network
Z; wa-mll 0,
d‘ Y"
z,,=-,!—=|3.7sn.y
"
Zemae= S50
’f
CA= Zg=
Yym113 06250 0250
1 2 1 2

b

Y, =020 SY,=080  Z2e=125Q
1 > 1 >
m-network Eguivalent T-network
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The yparametess
Y= 120, =y ==1010d 3y, =150
ZAy=(12x1.5-1)=0.8

ST ‘:—:L=:)’§ﬂ. = -.,:—l'%—z%s-ﬂ. Ty = ;‘%z%
=7 — 7y =,'g°:%=06?5£1‘
Zug= (s~ ‘-’u"-’%% =025 |
Ze=24y f-'i)—fg,z 1.250 ‘

o, ..v./—.' gb\_ o
— "a’q‘)—;.éh e 3 ‘_."<4\' -
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CHAPTER9
OW P NTRODUCTION

Bastcally, an electricnl filter (s a cireuit that Gin be designed to modify,
reshape or reject all unwanted frequencies of anelectrical ssgnal and accept or pass only
those signals wanted by the circuit's designer. In other words they “filter-out™ unwantetl
signals and anoadeal Hlter will separate and pass sinusoidal jnput sigoals based upon
their frequency.

In low frequency applicatians [up to 100kHz), passive filtors are generally
constructed ysing simpte RC|Resistor-Capacitor] networks, while higher frequency
filters [above 100kHz) are psually made from RLC (Resistor-inductor-Capacitor)
COHTIPONERTS.

Passiver Tilters are munle up of possive components such as resistors
capacitors and Inductors and have no amplifying elements (tronsistors, op-amps, ete) so
have no signal gain, therefore their output level is always fess than the input.

Fliters are so named according to the frequency range of stanals that they
allow to pass through them, while hlocking or "attenuating” the rest. The most
commonly used filter designs are the:

+ 1, The Low Pass Filler - the low pass filter only allows low fregquency signals fram
0Hz Lo 1E8 cut-oll [requency, fc point o pass while blocking those any higher.

+ 2. The High Pass Filter - the High pass filter only allows high frequency signals
from Its cut-off fréequency, fo pemt and higher to mfinity to pass through while
blocking those any lower,

«  3.The Band Pass Filter — the hand pass filter allows signats falling within a certain
frequency band setup between two puints to pass through while blocking both the
lower and higher frequencies elther side of this frequency band.

« 4 Band Stop Filter - 1t is sd Calleld bend-elimination, band-refect. or notch filter's;
this kind of filrer passes all frequencies above and helow a particutar range set by
the component values

Sinmipte First-order passive filters [1st order) can be mude by connecting
together a single resistor and o single capacitor In series aeross an ilyput sigmal, (Vin)
with the autput of the filter, [Vout ) taken from the pmction of these two components.
Dopending on which way around we connect the resistor and the capacitor with regards

to the output signai determines the type of fiiter construction resulting in either o Low
[ass Filter or a Figh Pass Filter,

As the function of poy filter 5 to allow signals of a given band of
frequencies to pass unadtersd while attenuating: or weakening @l others thove ure oot
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wantesd, we can define the amplitude response characteristios of an ideal filter by using
fn dcleal frequency response curve of the lour basic filter types 2 shown

2 As A A N
} HighPazsFikar  § Band Pass Fitel Ban Stop Fiter

U S A 0 N ed

A Low Pass Filter can be a combination of capacitance, inductance or
resistanee intended to produce high attenuation above a specified trequency and little or
no attenuation below that frequency. The frequency at which the transition pccars is
called the "cutoft™ frequency. The simplest low pass filters consist of a resistor and
capacitor but more sophisticated low pass filters have a combination of serles inductors
and parallel cupacitors. fn this twtorial we will look at the simplest tspe, a pussive two
camponent RC Jow pass filter,

A simple passive RC Low Pass Filter or LPF, can be easily made by
cannecting togather in series a single Resistor with a single Capacitor is shown below.
In this type ol filer arrangement the input signal (Vin) is applied to the sevies
comblmation (both the Resistor and Capacitor together) but the output signal (Vout ) is
taken agrass the capacitor only. This type of filier is known generally as “first-order

filter” or “one-pole filter”, why first-order or single-pole?, because it hus only "one”
reactive component, the tnpm:itur. in the circuit.

As mentinned
previously in the Capacitive .-
Reactance tutorial, the reactance of 2
capacitor  varies  inversely  with
frequency, while the volue of the Veer
resistor  remaing constant  as  the

frequency changes. Al low
frequencies the capacitive reactance, @ %

(Xc] of the capacitar will be very

large comprared to the resistive value of the resistor, R and as a result the voltige ucross:
the capacitor, Ve will also be large while the voltage drop across the resistor, Vi will be:
much Jower. At high freguencies the reverse |s true wath Ve being small and Vr being

farge.

WHile the circuit dbove is that of an RC Low Pass Filter circuit, [t can also
be classed as a frequency varmble patential divider cireuit sumifar to the one we looked
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at in the Resistors tutorial. In that tutorial we used the following equation to calculate
the output voltage for two single resistors connected in series,

w7 -\ R“
Vot = e
hUL n I<1 4 R"

whete. Kyt R 3 = Ry, the total renstance <f the cicsuit

We also know that the capacitive resctance of a capacitar in an AC clrouit

18 given as
Xe = -L; i1 Chim'y
2x1C

Opposition to carrent flow In un AC circult 1s called impedance,
symbol Z and for' 4 series cirenlt consisting of o single resistor in series with i <ingle
capacitor: the circwit impedance s caloulated as:

|
|

Z=|R”+X,

Then by substituting our eguation far impedance above into the resistive
potentinl divider equation gives us

REPOTENTIAL DIVIDER EQUATION
\7 = \/ . \C - \.' lL
ol g 1+ R ~ -~ imn 7 i
R4 x c "

So, by ustng the porential divider equation of two resisters (i series and
substituting for mpedance we can caleulate the output voltage of an HC Filter for any
given frequency,




LOW PASS FILTER EXAMPLE

A Low Pass Filter circult consisting of a redlstor of 4k72 in serfes with a
capacitor of 47n¥F is connected across 4 L0v sinusaidal supply. Calculate the putput
voltage (Voul ) ot a frequency of 100Hz and agaln at frequency of 10,000Hz or 10kHz

Voltage Output at a Frequency of 100Hz
Ne= L= L —338630
22l C  2ax100x47x |0
V 10 4 N \'.‘r: o xc =10% 33B63 - U Gy
' \} R*=X: V"‘ 33805
2RfC 2z 10.000=47-10°
A= 33806 =
Vi =V -—=—==710 e = 0718V
: JR £3i2 /nm‘-wm

We can see from the results above that as the frequency applied to the RC network
increases from 100Hz to 10 kHz, the voltage dropped across the capacitor and therefore
the output voltage [Vour) from the cireult decreases from 9.9y 1o 0,718y,

By ploiting the networks output voltage against different values of input frequency,
the Frequency Respunse Curve or Bode Plot function of the low pass filter circuit cin be
fuund, as shown helow,
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womar
Fraqiency
Gain =20 sy (o Jo
I—— . AR |
: Banc |, | [ StopBand
s | L_ZeRIng

0dB |
343 |

Outpat

53

-S0°

Fraqueney iMz)

The Bode Flot shows the Frequency Resporsse of the filter to be nearly flat
for low frequencies and the entire input sigral s passeéd directly Lo the output, resulting
In'a gain of nearly 1, called wnity, unthl it reaches its Cut-off Frequency point (fe). This is
pecause the reactance of the capacitar s high at low frequencies and blocks any cirrent
flow through the capacitor.

After this cut-off frequency point the response of the circunt decreases (o
zero at W stope of -20dB/ Decade or (-6dB/Octave) “roll-off”. Note that the angle of the
slope, thus <20dH/ Decade roll-off will always be the same (ar any RC combimation.

Any high trequengy signals applied to the low pass filter circuit above this
cut-off frequency point will become greatly attenuated, that is they rapidly decrense
This huppens hecause at very gh frequencies the reactance of the capagitor becomes
so low thut it gives the effect of @ short arcult condition on the output terminals
resulting in zero output,

Then by carehully selecting the correct resistor-capacitor combination, we
can create a RC arcuit that allows a range of frequencies below a certain valie to pass
through the circult unaffected while any frequencies applied to the circult above this
cut-0ff point to be attenuated, crenting what {5 commonly cilled o Low Pass Filter,
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For this type of “Low Pass Filter™ circult, all the frequencies below this
cut=nff, 16 point that are unaltered with little or no attenuation and are said to be in the
filters Pass band zone. This pass band zone also represents the Bandwidth of the (lter.
Any sigmal frequencies above this point cut-off potat are generally said to he in the
filters Stop hand zone and they will be greatly attenuated.

This "Cut-oft™, "Corner” or "Hreakpolnt® frequency is defined as being the
frequency point where the capaditive reactance and resistance e equal, R = Xe=4k70
When this ocours the adtput signal is attenusted to 70.7% of the input slgial value oy -
3d8 (20 log (Vout/Vin}) of the input. Although R = X, the output {s not halfof the inpwr
signal, This ks bucause it is equal to the veetor sum ol the two and s therefore 0,707 of
the input.

As the filter contains a capucitor, the Phase Angle (@) of the output
signal LAGE behund that of the Input and at the -3dB cut-olf frequency (fc) and Is -
450 a0t of phase This i£ due to the tme taken to charge the plates of the capacitor as the
input veltuge changes, resulting In the output voltage (the voltige ncross the capaeitor)
“logging” bebind that of the input signal. The higher the input frequency spplivd to the
filter the more the copacitor lags and the cirenit becomues more and wore "otit of phise”

The cut-off trequency point and phase shift angle can be found by using
the tollowing syuation:

1 l
== = 720Hz
f 2aRC 2 A700 < 47107

Phase Shift, ¢ = -arctan (2% fRC)

Then for our simple example of o “Low Pags Filtér” circuit above, the cut-
off trequency (fe) is given as720Hz with an output voltdge of 70.75% of the Input voltage
value and a phase shift angle of =45~

HIGH P ILTERS

A High Pass Fllter or HPF, 15 the exact opposite 1o that of the previously
seen Low Pass (ilter cireult, as now the bwo components have heen interchanged with
the output s gual { Vour | buing taken from across the resi stor as shawn.

Where as the low puss filter only allowed signals to pass below its cut-oif
frequency paint, fe, the passive high pass filter crouit as its nime inplies, only passes
signals above the selected cut-off poins, fo ellminating any low frequency signals from
the waveform. Consider the circuit below.
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THE HIGH PASS FILTER CIRCULT

Capacior, £

—
: o
Va
Hosater, F % Vet
<
e

In this cireuit arrangement, the reactance of the capacitor 15 very fugh ot Jow
frequendcies so the capacitor acty ke an open crauit and hiocks any input signals
at Vin until the cut-off jrequency pomt (fo] is reached, Above this cut-off frequency
point the reactance pf the capacitor has reduced sufficiently as to pow get more like a
short cireuit aliowing the entire jnput signal to pass dicectly to the output as shown
below in the High Pass Frequency Response Curve

o

Gain (dB) =20 log Vout

vin
—SwpEaE 'x: " Paczsand
' ' !
Qds
3
5
=
0]
|- ' — -
‘4B :
JeiH®) Frequancy (Hz)
‘;;t:ase ' (Logarithmic Scaie}
+45°
o(

Freauency (Hz)




The Bode Plot or Frequency Response Curve ahove for a High Pass filter is
the exact opposite to that of a low pass filter, Here the signal is attenvated or domped at
low frequencies with the output Increasing at +200B/Decade (6dB/Octive) until the
frequency renches the cut-off point | fo | where again R =Xc. It has a response curve
that extends down from infinity to the cut-off frequency, where the output voltage
amplitude I8 1/v2 =70.7% of the input signal value or -3dB (20 log (Vout/Vin}) of the
input vitlue

Also we can see than the phise angle (2] of the oatput signal LEADS that
ol the input and s equal to«45 at frequency fo. The Irequency response curve for
high pass filter implies that the filter can pass all signals out to Infinity. However in
practice, the high pass filter response does not extend to infinity but is Umited by the
clectrieal characteristicd of the components used.

The cut-6ff fregquency point lor o frst ardet high pass flilter can be found
using the 'same equation as that of the low pass filter, but the equation for the phase
shift Is modified slightly to account for the positive phase angle as shown below.

Phase Sluft ¢ = arctan
i 2n/KC

The ciredit gain, Av which is given o Vout/Vin [magnitude | and is colculoted as:

Vo
A.—_- _‘:‘"Ll:.‘- — _R = — 8.
I Ry Xo& £

atlow f: Xc — =, Vout=0
athigh f: Xc -0, Vout = Vin

Calculite the cut-off or “breskpoint” frequency ( fo ) for a simple high
pass filter consisting of anB2pF capacitor connected in series with 5. 240kE resistor.

1 1
2nRC 2222400008210
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The cut-off trequency or fc point in @ simple RC passive filter can he
nccurately controlled using just a single resstor in senes with & non-polarized

capacitor, and depending upon which way around they ire connected either o low pass
ot o high pass filter is dbtained.

One simple use for these types of Passive Filters is in audio amplifier
applhications or circuits sach a8 In loudspenler crossover filters or pre-amplifier tone
controls. Sometimes it is recessary to only Fass o certain range of frequendies that do
nor begin at OHz [DC) or end at some high frequency point but dre within o certain
frequency bind, either mrrow or wide

By connecting or “cascading” togethera single Low Pass Filter circuit with
a High Pass Filter circut; we can produce another type of passive RC filter that passes a
selected range or “hand” of freguencies that can be either narrow or wide while
attenuating all those outside of this range. This new type of passive filter arrangement
produces @ frequency selective filter known commondy as @ Bamd Pass Filter or HPF for
short.

2 C, i

VF C

2
D0
&

=
e

Unlike a low piiss Alter that only pass slgnaly of a low frequency range or
# high pass filter which pase signals 6 3 higher frequency range, a Band Pass
Filters pusses sighals within a certain “band” or “spread” of frequencles without
distodting the lnput signal or introducing extra nolse This band of frequencies can he
any width and Is commonly known as the tilters Bandwidth.

Bundwidth is commonly delined as the frequency ronge that existy
between two specitied treguency cui-off points [ fe ). that bre 3dB below the maxinim
centre or fesonant peak while attenuiting or weakeniog the others outside of these two
poines.

Then for widely spread Ifrequencles; we can siniply define the term
“bandwitdth”, BW us baing the difference between the lower cut-off frequency [feumwes )
and the higher cut-off frequency [ fewmm | points. Ity other words, BW = fi— fu. Cleatly
for a pass band fifter to fonction correctly, the cuteofl frequency of the low pass filter
misst be higher than the cot-off Trequency for the high pass hiter

The “ideal” Band Pass Filter can also he usad to isolate or filter ont certain
frequencies that lie within o particular hand of frequencies, for example, neise
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cancellation. Band nass filters are known generally as second-order filters, {two-pole)
because they hive “two" reactive component, the capacitors, within thelr clreuit design.
Onie cipacitor i the low pass clrenit and another capacitor in the high pass circult

Oulput

Fraguency (Hz)
Phasa ‘ {Legarthmic Scal=)

The Bode Plot or frequency responte curve above shows  the
charpcteristics of the band pass filter, Here the signol i€ attenuatsd at low frequencies
with the output Increasing ot o Slope of «200R/Decade (6dB/Octave] until the
frequency reaches the “lower cut-6ff" puint {1 At this frequéancy the output voltage is
again 1 /N2 =70.7% of the Input'signal value of -348 (20 log (Voult/Vin) ) of the Input

The output continues st maxirnum gain untl it reaches the "upper cut-ofl”
point fu where the output decreases at o rote of -20dB/Decade (6dB/Octayvi)
attenuating any High fregquency signols, The point of moximum odtput gain Is genorally
the geometric mean of the two -3dB vilue botwéen the lower and uppet cut-off polnts
und is called the “Centre Fregquency” ar “Resomant Pedk” vilue fr. This geometric menn
virlue s caleulated as being fr< = fiumiei % fluwen.

A Band puss filter 15 regarded 45 a second-order [two-pole] type flwr
becnuse It has "two? reftctive components withil s cirouit stiucture, then the phase
angle will be twice that of the previously seen first-order filters, Le, 1809, The phase
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angle of the putput signal LEADS that of the input by +90" up ty the centre or resonant
frequency. fr point were It tecames “zaro” degrees (09) or “in-phase” and then changes
to LAG the input by -90¢ as the output frequency increases

The upper ant lowes cut-off freyuency points for a band pass filter cun be
found wsing the same formula as that for both the low and high pass filters, For example

S
SET2nRC

Then L‘f‘m’ly the width of the pass band of the filter can he controlled by the
positioning of the two cut-off freguency points of the two filters,

Pass Filter Example

A second-order pand pass filteris to bhe constiucted using RC
camponents that will only llow 2 ringe of frequencies to pass above Tkiz (1,000Hz)
and belpw 30KkHz (30,000M2), Assuming that both the resistors have values of 10kQ's,
aleulate the vidues of the tw capacitors requlred.

S;%nm Low-pass filter |—| High-pass filter —*25'334
doc a&mes ut}?ac:‘sar'ar Uﬁg&“

The High Pass Filter Stage
The value of the capacitor C1 reguired to give a cat-offl frequency i of
1kHzwith a resistor value of 10K s caleulated as:

i 1 .
e = =15.
“ = 2nR 272100010000 15.8nF

Then, the values of R1 and C1 required for the high pass stage Lo give o
adt-oft frequeney of 1.0kHz tre: RT = 101d2’s and C1 = 16nF.
i Loty Piss FIter Stag

The value of the capacitor C2 reyuired to give 3 cut-oft froquency fu af 30kHz with a
resistor value of 10k s colculited as:

S e 1
C= %R -~ 2rx30,000x10,000

=210 pF




Then, th,evnluqs of R2Z and €2 required tar the low pass stage to give a cut-

off frequency of 30kHz are, R = 10k0's and € = 510pF. However, the nearest preferred
valie of the calauluted capacitor value of 510pF is 560pF so this s used instead.

With the values of buth the resistances R1 and R2 given as 10kg, and the
lwn values of the cipacitors CLand €2 found for the bigh pass and low pass filters

SnF and 560pF respectively, then the clienit for gur simple pussive Rand Pass
Fllm' Is given s,

Hoh Pass Filee Stige Low Pass Pl Stage
|
Ci= 1BnF Re = 10K

—"\\\——2
=550pF H Vie

and Pass Filter Resonant Frequéncy

We can also caleulate the "Resonant™ or "Céntre Frogquency™ (fr) point of the band pass
filtor were the dutput gain is at e maximuym or péak value. This peak value is not the
arithmetic averpge of the upper and lawer =308 cut-off point< a5 you might expect bt is
i Lack the “geometric™ or mean vilue, This geomettic menn value s caleulared as
beiny fr == foyumes) X feameny for aample:

Céntre Freguency Equation

o Wherg, [, is the resonant or cefitre frequency
o 108 the lower -3dB cut-off freguency point

o fu s the upper -3db cut-olf frequency polnt

And in oursimple exampie abave, the cilcalated cut-off frequencies were
found to be fi.= 1,060 Hz and fii= 28420 Hz using the filter values.

Then by substituting these values into the thove equation gives 3 centrad
resonant frequency of:

fir=Jfi x f; = /10601 28420 = 54844z
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-stop filters

It is so called bond-#limindtion, band-sefecr, or aotch filters; this kind of
filter passes all frequencies above and below a particilar range set Ly the compenent
vidues: Not sueprisingly, it can be made out of a low-pass and o Jugh-pass flter, just iike
the band-puss design, except that this time we connect the two filter sections in parallel
with each pther instead of in series. (Figure below)

passes low frequencies
—| Low-pass filter | — l

V_, | High-pass filter _,T
passes Nigh Trequencies

System fevel block diagram of a band-stop fileer.

Constructed using two capacitive filter sections, it Jlooks something [ike
{Figure below),

R R,
VWA
a G Cy
|| . ||

] I ol
source @ R 2 Riad

AN E -
-—%&V\",:'i'«:-e:‘“y\mu_
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Butterworth Filter

A Butterwarth filter is & type of slgmal processing filter designed to have a frequency
response as flat as possible in the passhand. Hence the Butterwarth filter is alsa knawn as
“muximally flas maznitude filter™ 1t was mvented in 1930 by the British criganeet and
physicist Stephen Butterworth {n his paper titled “On the Theory of Filter Amp(f]’ fers".
The frequency response of the Butterworth flter is flat in the passhand (i.e. 3 bandpasy
filtgr) and roll-offs towards zero in the stopband. The rate of roll-off response derpends on
the order of the filter. The number of reactive elements used in the filter circuit will
decide the order of the filter.
The Inductor and capacitor are reactive elements used [n filters. But In the case of
Butterworth filter only capacitors are used. So, the number of capacitors will decide the
order of the filter.
Here, we will discuss the Butterworth filter with a low pass filter. Similarly, the high pass
filter can be designed by just changing the position of resistance and capacitance.
Butterworth Low Pass Filter Design
While designing the filter, the designer tries to achieve a response near to the ideal filter.
It 13 very difficult to match results with the exact ideal characteristic. We need to use
complex higher-order If you increase the order of the filter, the number of cascade stages
with the filter is niso incrensied. But in practice, we cannot achicve Butterworth's ideal
frequency response, Batause [t produces excessive ripple in the passband.In Butterworth
filter, mathematically it Is possible to get flat frequency response from 0 Hz to the cut-off
frequency at -3dB with no ripple. If the frequency is mare than the cut-off frequency, It
will rolt-off towards zero with the rate of -20 dB/decade for the first-order filter.1f you
increase the order of the filter, the rate of 4 roll-off period is also increased. And for
second-arder, it is 40 dB/decade. The quality factor for the Butterworth filter is 0.707,
The below figure shows the frequency response of the Butterworth filter for various
orders of the filer
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Frequency Response of Butterworth FilterThe generalized form of frequency response for
nth-arder Butterworth low-pass filter {s;

Hixe) =
Al 2= 2n

v

Where,
n = order of the filter,
v = operating frequency (passband frequency) of circuit
we = Cut-off frequency
= maximum passbhand gain = Ave

The below eguation is used o find the value of ¢.

Hy = \/14,-:'5

Where,
Hi= minimum passband gain
Hy = maximum passband gain

The lowpass filter is a filter that allows the signal with the frequency is lower than the
cutoff frequency and attenuates the signals with the frequency Is more than cutoff
frequency. In the first-order filter, the number of regctive components is only one. The
helow figure shows the circuif diagram of the first-order lowpass Butterworth filter.

’V‘,
i

Flg. 2.79 First order high pass Butterworth filter




The low pass Butterworth filter is an active Low pass filter as it consists of the
This op-nmp operates on non-inverting mode. Hence, the gain of the filter will demde by
the rasistor Ry and Re. And the cutoff frequency decides by R and €.

Now, if you apply the voltage divider rule at point Va and find the voliage across a
capacitor. lvis given as;
Vo= =22 4,
It - ’-IY( 1

v = e
v N —_)[E'I?I

= -3 =
= 1
Va QtfRC' e
;N ‘{.III
Va= | — =IRC
J
Yl 2 fRC

Because of the non-inverting configuration of an op-amp,

. " N
‘ljz (l t ’,ﬁ) ‘a

2 R/ “‘lh
‘"—(“ 7:.) 11 j2nfRe

| &7 A’
f
l+J-};

WHERE




.'l‘j =14 f}l
Az=Gam ol tilter in Passband
1 1o = Cutolf Frequency
Je= 2rRC = Operating Frequency
-‘i = lﬂ Lo
v 1V
Val Ay
= J

L Arvery low trequency, fe<i,
:—:’I = Ay(Comastant)
“
2 At cutoff frequency, =1
L] N T—
= =707
%l V2 J
A, At hagh trequency, - 1.
‘—P- < My
V!




The below figure shows the frequency response of first-order lowpass Butterworth
filter,

Voliage gan

Ac rate of gecragse 20 dB/decade

0.707 Ag ~am le. Slope - 20 d8/decade
(3 dB down)
Pa

.-M";-«-—-swpband—o

: » requency
0 £

Fig. 2.75 Frequency response
Second-order Butterworth Filter
The second-order Buiterworth filter consists of two reactive components. The

circuit diagram of a second-order low pass Butterworth filter is as shown in the
helow figure.

"I

Fig. 2.76 Sscond order low pass buttorworth filter

In this type of filter, resistor R and Ry are the negative feedback of op-amp. And
the cutoff frequency of the filter decides by Rz, Rs, €z, and C3.The second-ordar
lowpass Butterworth filter consists of two hack-to-back connected RC networks.

cF And R is the load resistance. Firsi-order and second-ordet Butterworth filters are
very imporiant, Because we can get higher-order Rutterworth filter by just
cascading of the first-order and second-order Butterworth filters.




Ler's analyse the circuit of second-order Butterworth filter,

Apply Kirchhoft's Current Law at point V.

Put the value of V in eguation-{1)

(1)

-

—— !
)+ stz Cy

Vi = V4Ll = sliyC'y)




V= Vulb = oy ) Vil w285 - b

Py g ——— g ———— —— -

Vil —aBCa) - V5

L - F ’&
Vi WAL CdR€s) Vel + oRyC) Wy VLl +SRNCY VL
i s - -J-‘- iy It
Vie , Vo _ Vald=afsCy) Vall=slts€s)  Vaid+oftsty Vo
= ;i; 7;? " R Ha
e B ) by S GO | s aRCs)
R’ + Tots =1, [""(1 Al )+ iy n R‘]
Vip = VisCalty _ [ BCH + 2RyCa) + ]+ 2B, Cy) = Ryl + aReCy) - R
I = fa ity

BV =V GaCa Rey = 85 (R BeaCall = s RyCa) + Byl = afaCa) +

I‘J";. """‘ﬂd- "2 =

Fall + sl — naj

Vil = s C) | RuBia sC5 + s — 1) — Ba)

= R\ = Vel AL Ry
T e AR O R RO - Ry = ) - Ry
Bacianse ol the non thiverting condiguration of an op.aig,
Yo =4,V

Whese,

A, = |= f%: Guainb ) filter io peoashiond
1

AUV, VR Ry

bl [lla--l?a(-‘s) (Ryfaal’y = Ry = Ry} - R;]

Al‘p“_ y I Hly

A iy,

T AR (R R+ Ry ='103) — 1y

W (L = eRCS) (RaFyel™s 4 Ry + Ryl -

= L5 sRyCy| [3RsCa + Ry + Ra)— R’

Ry~ ApaCaRiNs) = A)RI%;,
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Rearrange this equation,

W Aty
Vi [+ B 000 By + Ry + ARz BCs) — Ry ~ Ay By

ih Al

Ve [[Ry= Ry =R RCy 4 sRYRCy + aRGCs = #* RHECC8) = Ry = s Ay Ry

Vo Asfly
T WIS + AR BTy + Ry BT+ Rf(’, ~ A Ryt + fly

101 A ‘ 4
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Compare this equation with the standard form transfer function for second-order
Butterworth filter. And that is,

Va A

":'ll "2 -~ 2(‘&'(\-‘ <+ J?_‘

By comparing above equations, we can find the equation of cutoff frequency and
overall gain for the second-order lowpass Butterwarth filter.

The gain of filter is,




Ay

et = Tty o0y
And the Cutofi frequency of filteris,
=3
bR ROy
I

Now, if we comsider the valie ot Rz 15 same as Rz and the value of C; 15 same as C3,

Ry=M=R wd Ty=C3=0C
|

fe= 2aitc”
Now if we put above valves in transfer funchion,
Vo _ ==
".m A’ - ﬁkrfm m*"g_""m- - W.L-
b
- RC
Yo _ A

Vin & +al@-Apw+
From abave equation, the quality factor Q is equal to,

1
===,




We can say that, the quality factor is only depends on the gain of filter. And the
value of gain should not more than 3. If the value of gain 1s more than 3, the
system will be unstahle.

The value of quality factor is0.707 for the Butterworth filter. And if we put this
value in equation of quality facter, we can find the value of gain.

|
3-—:‘,

0.707 =
.'l, = 14-580

1+ Ry Ry = 1.586

Ry Ry =0.586

While designing the second-order Butterworth filter above relation must be satisfy.
The frequency response of this filter is as shown in below figure.
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Third-arder lowpass Butterworth filter can design by cascading the first-order and
second-order Butterworth filter.




The below figure shows the cireuit diagram of the third-order lowpass Butterworth filter,

Thied: Order Law pass Buttzrworth Filter Cireull
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Third-order Low Pass Butterworth Filter

In this figure, the first part shows the first-order lowpass Butterworth filter, and the
second part shows the second-order lowpass Butterworth filter.

But in this condition, the voltage gain of the first part is optional and it can be sef at any
value. Therefore, the first op-amp is not taking part in voltage gain. Hence, the figure for
the third-order low pass filter can he expressed as below figure also:

First-order

Second-order Low pass Filter
Low pass Filter
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The voltage gain of a second-ordér filter affects the flatness of frequency response.
If the gain of the second-order filter is kept at 1.586, the gain will down 3db for
each part. So, the overall gain will down 6dB at the cutoff frequency.

By increasing the voltage gain of the second-order filter, we cin offser the
cumulative loss of voltage gain.

In the third-order Butterwaorth filter, the rate of a rell-off period is -60dB/decade.
And the frequen%gasponse of this filter is nearer to the 1deal Butterworth filter

compared to the first and second-order filters. The frequ
Gain (dB)
Ideal Response
Ay
Rate of roll-off
= -60dB/decade
B
-(-l'---band—*i '_':_
; s

T (Hz)

(frequency response of this filter is as shown in the below figure.)

Eourth-order Lowpass Butterworth Filter

Fourth-ordet Butterworth filter is established by the cascade connection of two
second-order low pass Butterworth filters. The circuit diagram of the fourth-ordes
lowpass Butterworth filter is as shown in the below figure,




