

Lesson plan

Subject Name: Digital Electronics and Computer Organization

Branch: Computer Science Engineering

3rd Semester(winter 2025)

Name of Faculty: Samir Kumar Sethi

Semester: 14/07/2025 To 15/11/2025

Total weeks: 15 weeks

week	Three Classes per week	Theory Topic
1 st	1 st	Introduction to object-oriented programming, user defined types,
	2 nd	Structures, unions,
	3 rd	polymorphism
2 nd	1 st	encapsulation.
	2 nd	Getting started with C++ syntax, data types, variables, and strings
	3 rd	functions
3 rd	1 st	default values in functions
	2 nd	recursion
	3 rd	namespaces, operators
4 th	1 st	flow control, arrays, and pointers
	2 nd	arrays, and pointers
	3 rd	programs
5 th	1 st	Classes and Objects
	2 nd	private, public
	3 rd	constructors, destructors
6 th	1 st	member data, member functions,
	2 nd	inline function, friend functions,
	3 rd	static members, and references
7 th	1 st	Inheritance: Class hierarchy, derived classes
	2 nd	single inheritance, multiple, multilevel
	3 rd	hybrid inheritance, role of virtual base class
8 th	1 st	constructor and destructor execution
	2 nd	base initialization using derived class constructors
	3 rd	Polymorphism: Binding, Static binding, Dynamic binding
9 th	1 st	Static polymorphism: Function Overloading
	2 nd	program
	3 rd	Ambiguity in function overloading
10 th	1 st	Dynamic polymorphism: Base class pointer, object slicing
	2 nd	late binding, method overriding with virtual functions
	3 rd	pure virtual functions, abstract classes
11 th	1 st	program
	2 nd	Operator Overloading
	3 rd	This pointer, applications of this pointer
12 th	1 st	Operator function,

	2 nd	member and non-member operator function
	3 rd	program
13 th	1 st	operator overloading
	2 nd	program
	3 rd	I/O operators
14 th	1 st	program
	2 nd	Exception handling: Try, throw, and catch
	3 rd	exceptions and derived classes
15 th	1 st	function exception declaration,
	2 nd	unexpected exceptions
	3 rd	Question answer discussion

Teaching Methodology

Lectures: Use slides, animations, and circuit simulations to explain concepts.

Hands-On Exercises: Use simulation tools (LT Spice, Multisim) for circuit design.

Assignments: Weekly problem sets to reinforce theoretical concepts.

Group Discussions: Encourage discussions on real-world applications.

Quizzes: Conduct periodic quizzes to assess understanding.

Case Studies: Analyze practical applications of digital electronics in computer systems.

Assessment Strategy

Progressive Assessment (30 marks):

Weekly Assignments: 5 Marks

IA-1: 10 Marks

IA-2: 10 Marks

Class participation and discussions: 5 Marks